
Evaluating 
Recommenders



Matthew 
Effect

For unto everyone that hath 
shall be given, and he shall 
have abundance: but from 
him that hath not shall be 
taken even that which he 
hath. 



Diversity
● Rich will get richer and the poor get poorer
● Popular items get recommended often
● Filter bubble
● Hard to measure diversity
● Attempt to calculate diversity by calculating the average dissimilarity 

between all pairs of recommended items– Matthew Effect



Coverage

● Content coverage - Coverage of the catalog
● User coverage - Recommend assets to all users

○ Iterate over all users, call the recommender 
and see if it returns anything





Serendipity ● Surprising the user 
● Less constraint on the algorithm
● Difficult to measure



Offline Evaluation



Error Metrics ● RMSE
● MAE
● If items have a long tail then divide 

the data into a set with popular items 
and evaluate that, then separately 
evaluate the other data set with 
long-tail items







Rank Aware 
Metrics

● We are interested in having good 
recommendations at the top but not care so 
much about what happens further down

● It’s often considered more important to optimize 
precision, while not putting too much 
importance on whether the user gets all the 
possible relevant items (the recall)



Precision at K

● Calculate average over all users and dividing by the number of users



Mean Average Precision (MAP)

● Take the mean of the average over all recommendations



Discounted 
Cumulative Gain

● It is finding each relevant 
item and then penalizing 
the items the farther down 
it is in the list



Splitting the Dataset



Random Splitting

Random splitting Recommenders will be trained with 
ratings that are added after the ones 
that it needs to predict

User in validation set but not seen in 
Train set

Item in validation set but not in the 
Training set



Split by Time



Split by Time ● Users who only appear in the test set
● Clean the test data set for users who 

don’t appear in the training set



Split by Users

Divide each user’s ratings between a 
training and test set

This way all users will be in the training 
set and we won't find any users in the 
test set that haven’t been seen before

More demanding to split data this way We need to order data by timestamps



Online testing



Summary

● You should consider testing before 
implementing a recommender 
system.

● Regression tests guard your code 
against mistakes added 
unknowingly.

● Serendipity, the users finding things 
in your recommendations that they 
love but never knew they would, is 
hard to measure, but it’s important.

● Different metrics are used to 
calculate whether the 
recommender is good or, at least, if 
it compares to a baseline.



Summary

● A/B testing (where visitors are split 
into two groups) is something you 
need to consider if you want to 
fine-tune your recommender 
system. An A/B test can also be 
done to test which parameters work 
better; for example, the size of the 
neighborhood in collaborative 
filtering or the number of latent 
factors in matrix factorization.

● Watch out for feedback loops.


