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Recommendation system

Find similar songs
based on nearest
neighbour search

Find new posts in
user’s network

Find items which are
usually co-purchased

Find items based on
different
rows/shelves/topics

Remove tracks users
listened before

Remove posts from
blocked and muted
users

Remove items which
are out of stock

Remove items which
are not available for
user’s country

Predict likelihood
that a user will listen
to a song

Predict likelihood
that a user will
interact with it

Predict likelihood
that a user will
purchase an item

Predict user’s stream
time per item

Trade-Off between
score, similarity,
BPM, etc

Change order that
adjust posts are from
different authors

Reorder items based
on price points

Organize
recommendations to
fit genre
distributions




Candidate Retrieval & Ranking Architecture
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Using Candidate Retrieval and

Ranking for Healthfeed




Creating User Embedding for Candidate Retrieval




Creating Item Embedding for Candidate Retrieval




Combining User and Item Embedding for Candidate Retrieval
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Embeddings Embeddings of Embeddings
of items in terms in documents of terms in
user history in user history, or the document
terms searched by
the user.




Candidate Retrieval from Millions to Hundreds
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Ranking Recommendations — Hundreds to Dozens
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Complete Recommendation Architecture

Inference
(Online) Retrieval Filtering Scoring Ordering

Embed input Retrieve top k Filter invalid Add features to Transform Score top k Ordering
item or query candidates candidates candidates Features candidates business logic

Feature Ranking

Filter Store model

<

Build Approx.

A
A
|
|
|
: NN index

|
|

T
A\
A &

|

|

|

|

|

|

1

Py ————

store (item.user) Transforms model Policy

f f N

Iltem & user data \ Business logic

model from catalog Filters

f b

Training data Item data /\ Interaction data

|
1

Train embedding Embed items J ( Build Bloom ]: [ Build feature | Train ranking Define Ordering
J

N\

e e - —— — — N e e e - e e e o — R ——
Training
(Offline)




Evaluating Recommendation Systems

Precision@k
Recall @k

c overage

N ove_l‘tt/
Personalization

Increase in number of views
Increase n Watch tTime
Increase in number of shares
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metrics metrics

Intra-list similan”tt/
ROC or AUC Ratio of Doctor bookings or lab tests to the
MSE or RMSE time spent on Healthfeed




Conclusion

Design the system based on Business requirements and
Data

Candidate Retrieval and the Ranking system will scale
with data

Start with a simple system and increase the complexity

AB Testing capability is important for evaluating and
improving the recommendation system

Beware of Feedback loops



