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Math for Machine Learning

Linear algebra - Week 4
Bases 
Span 

Orthogonal and orthonormal bases 
Orthogonal and orthonormal matrices
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Quiz
● The product of a singular and a non-singular matrix (in any order) is:

● Singular
● Non-singular
● Could be either one



Solution
● If A is non-singular and B is singular, then det(AB) = det(A) x det(B) = 

0, since det(B) = 0. Therefore det(AB) = 0, so AB is singular.
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Quiz
● Find the determinants of the following matrices
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More conceptual explanation of the null space
● Elaborate here



Quiz: Null space of a matrix
Problem: Determine the dimension of the null space of the following two 
matrices
Matrix 1

Matrix 2

5 1

-1 3

2 -1

-6 3



Solutions: Null space of a matrix
Matrix 1: Notice that this is a non-singular matrix, since the determinant 
is 16. Therefore, the null space is only the point (0,0). The dimension is 
0.

Matrix 2: The corresponding system of equation has the equations 2a-
b=0 and -6a+3b=0. Some inspection shows that the first equation has 
the points (1,2), (2,4), (3,6), etc. as solutions. All of them are also 
solutions to the second equation, -6a+3b=0. Therefore the null space is 
all the points of the form (x, 2x). The dimension of this null space is 1, 
and the matrix is singular.

5 1
-1 3

2 -1
-6 3
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