Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see <u>https://creativecommons.org/licenses/by-sa/2.0/legalcode</u>

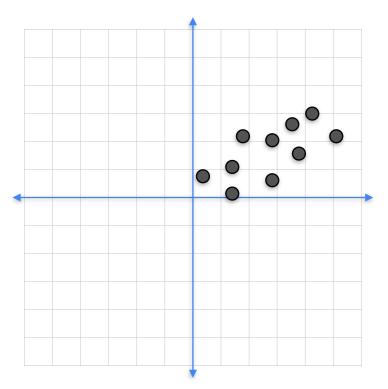
Math for Machine Learning

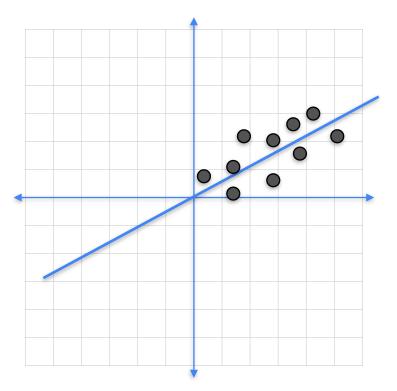
Linear algebra - Week 4

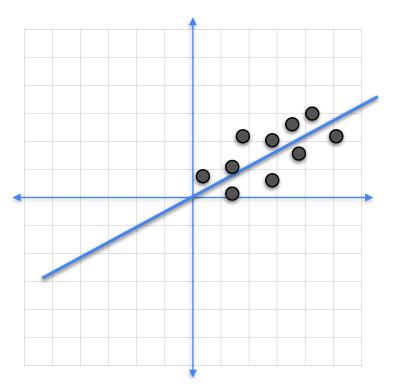
Bases Span Orthogonal and orthonormal bases Orthogonal and orthonormal matrices

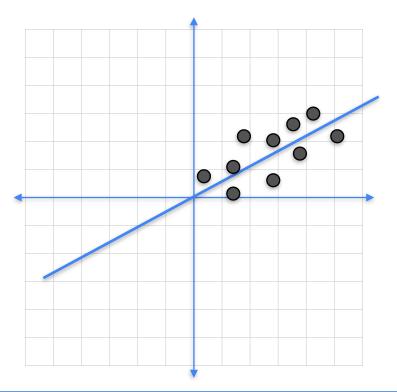
Determinants and Eigenvectors

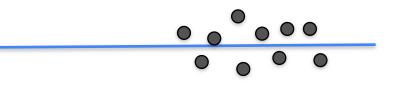
Machine learning motivation

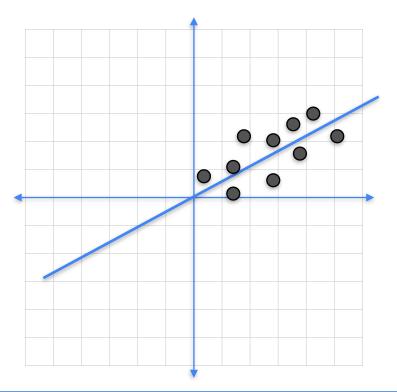


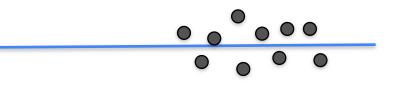


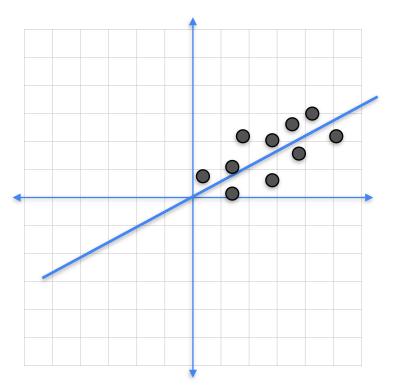


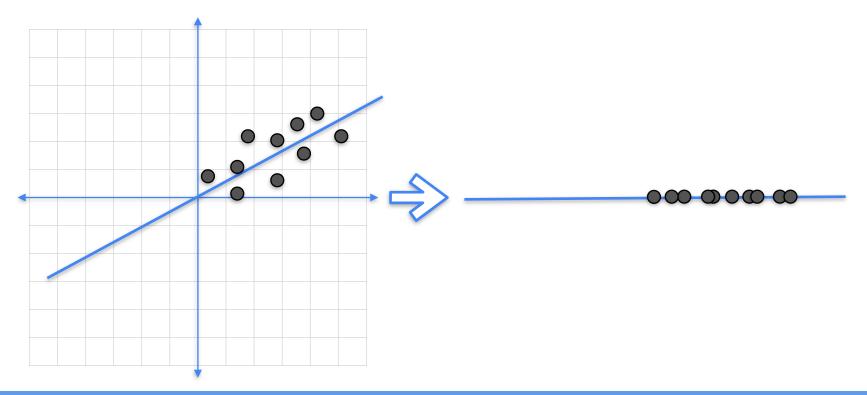


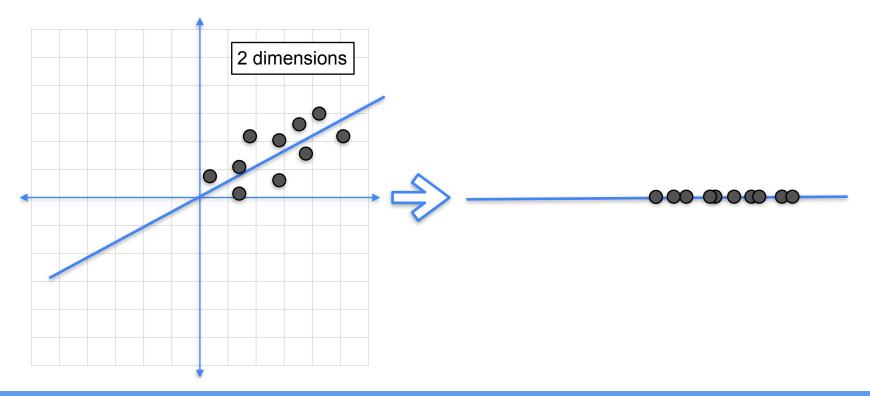


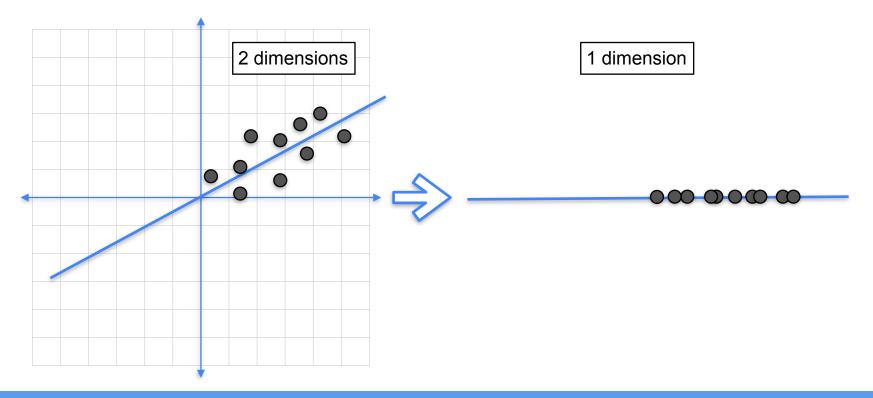


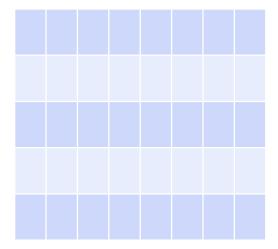


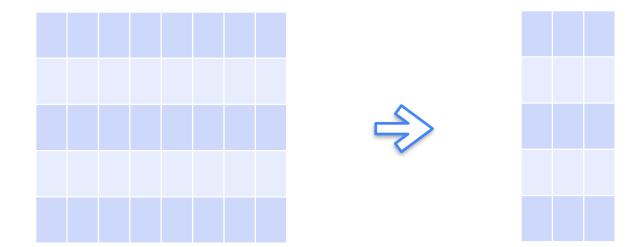




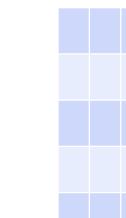








8 dimensions





Determinants and Eigenvectors

Singularity and rank of linear transformations

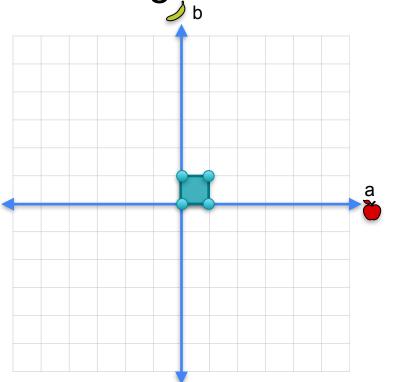
Non-singular transformation

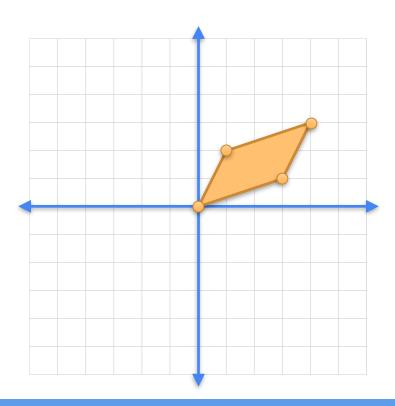
 \mathcal{A}

2

3

1



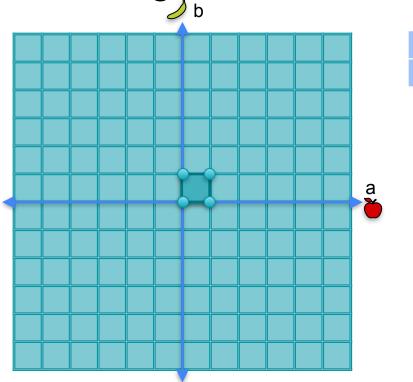


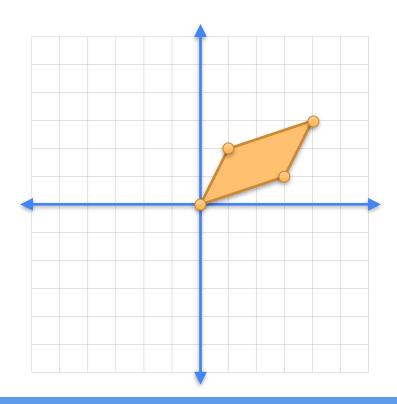
Non-singular transformation

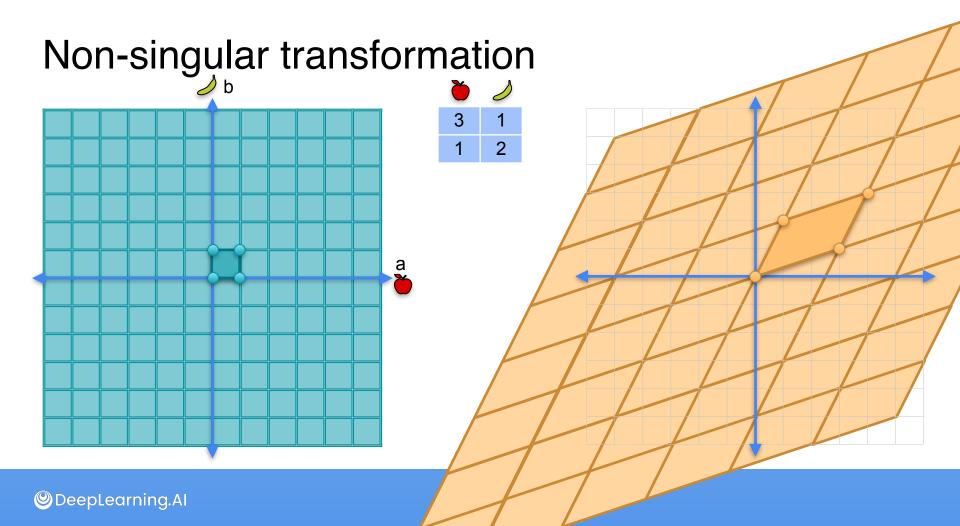
3

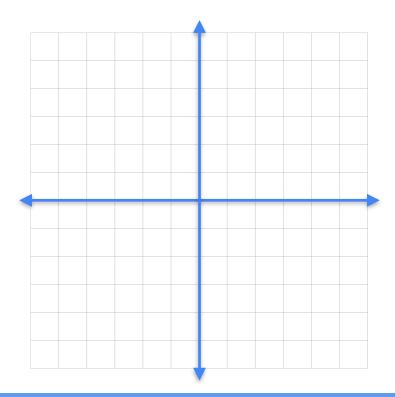
1

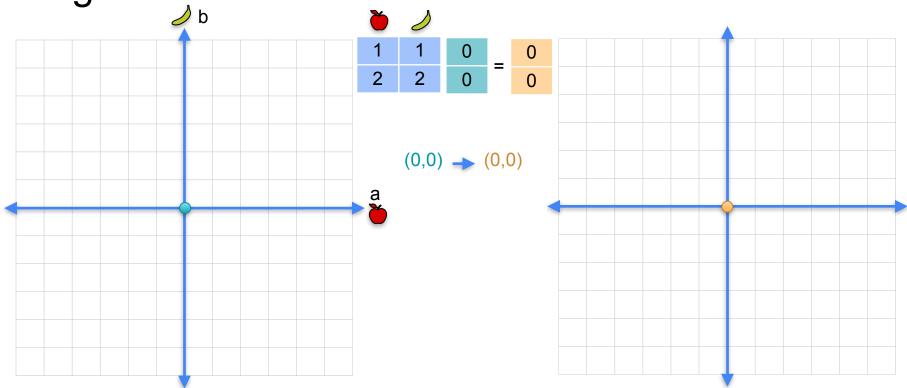
2

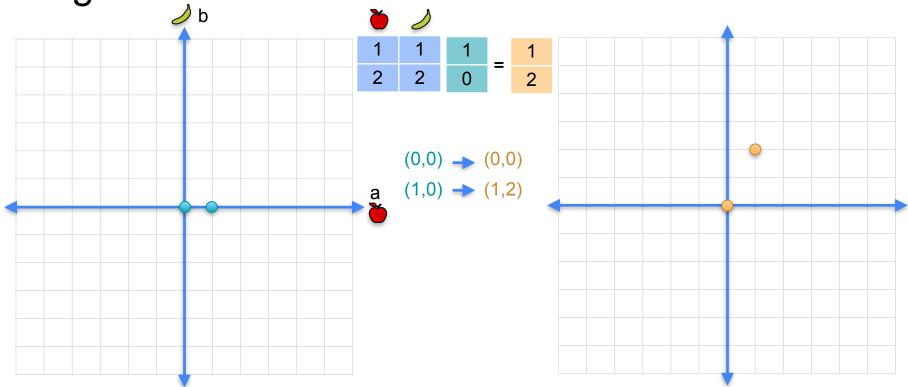


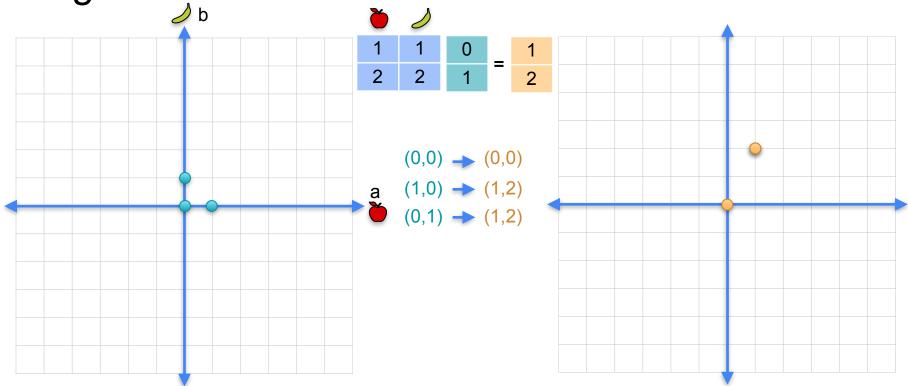


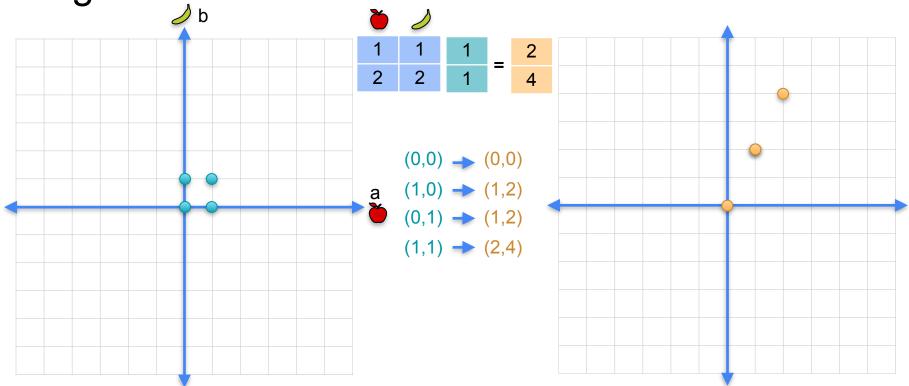


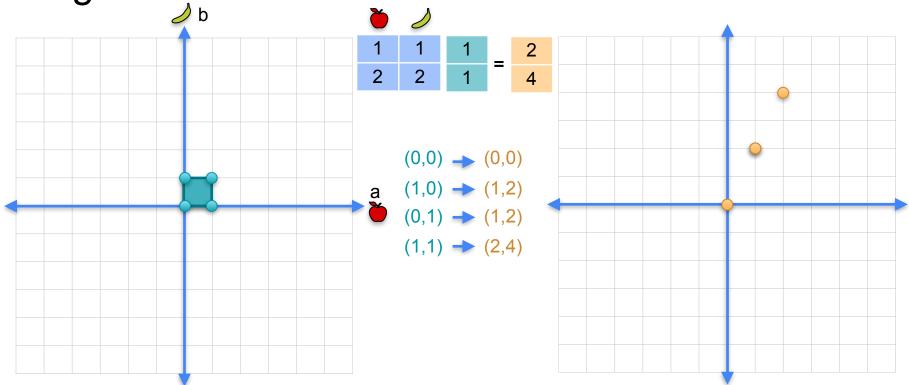


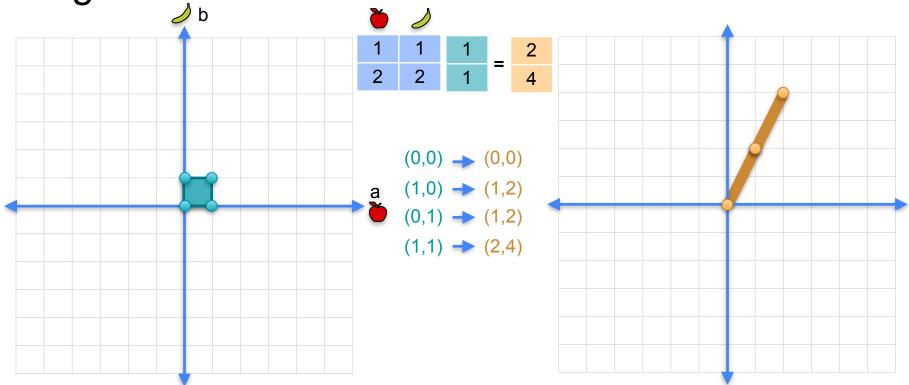




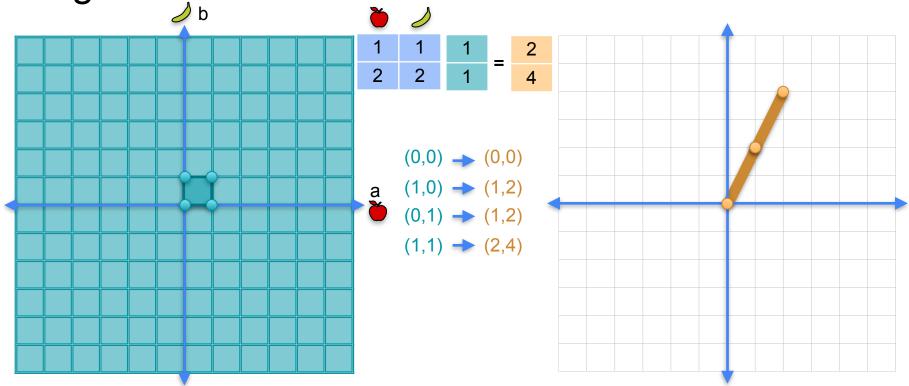




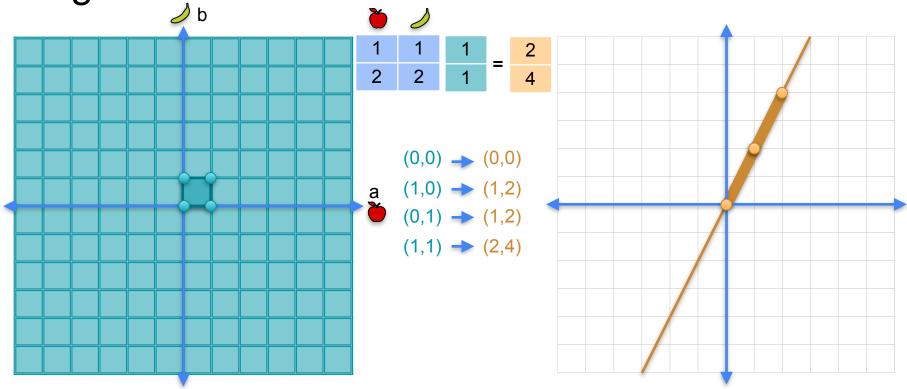


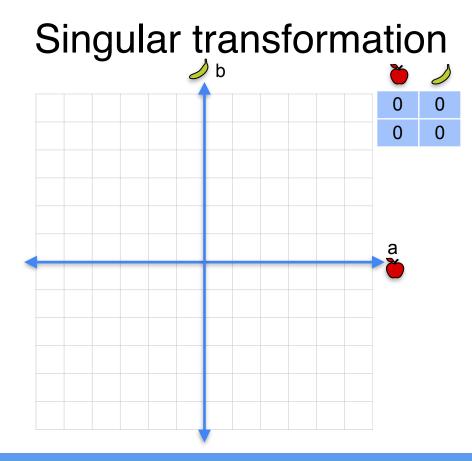


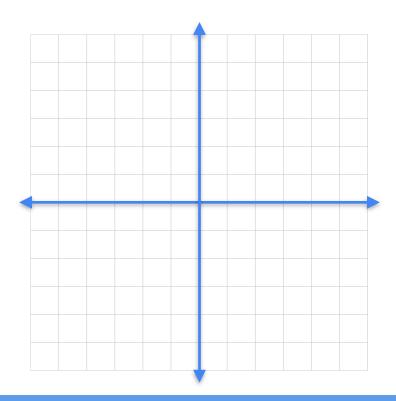
Singular transformation 2°

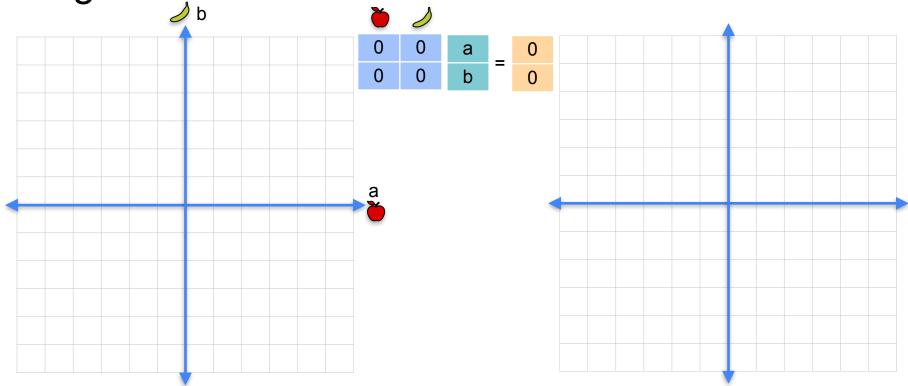


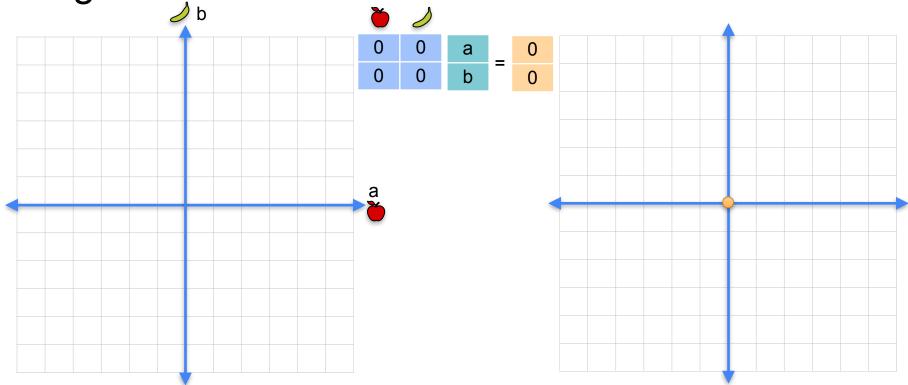
Singular transformation 2°

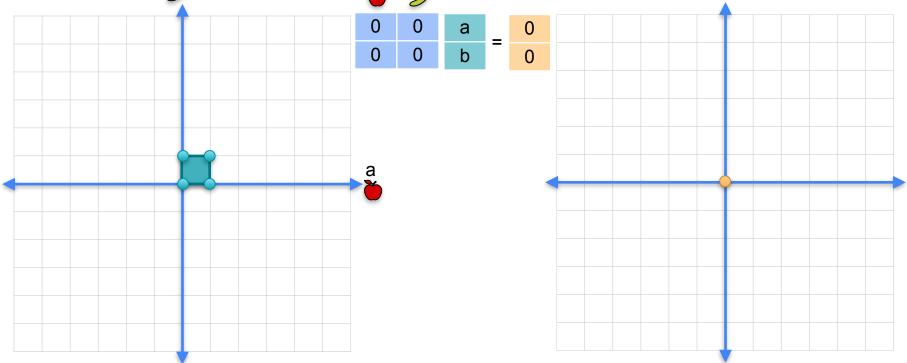










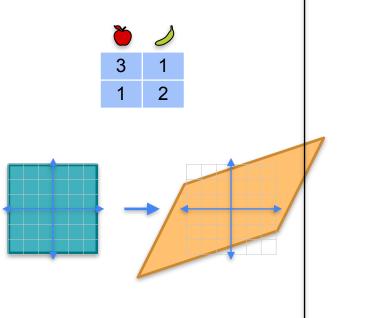


Singular transformation \mathcal{A} 0 0 а 0 = 0 0 0 b а ×

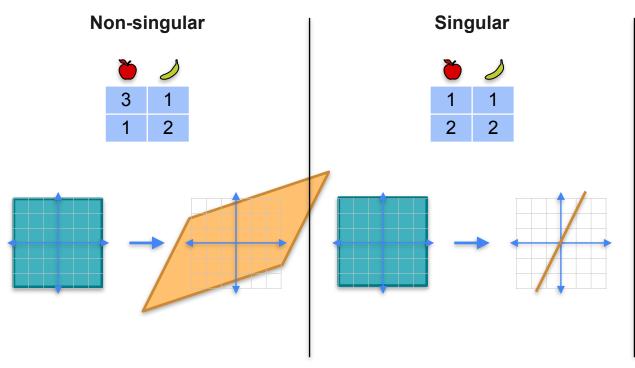
Singular and non-singular transformations

Singular and non-singular transformations

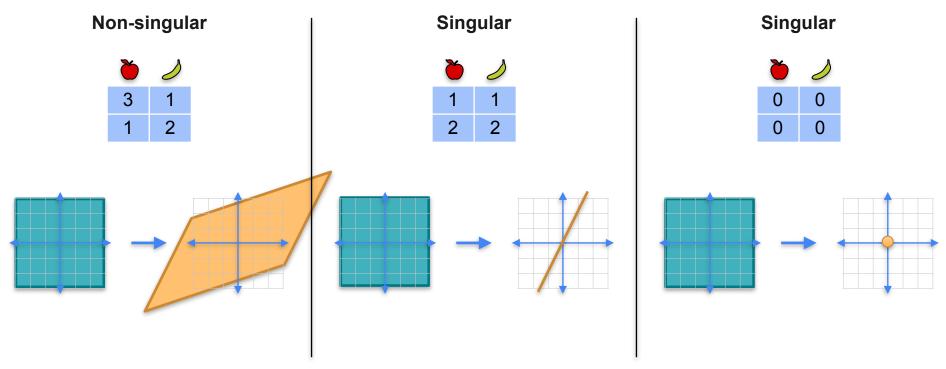
Non-singular

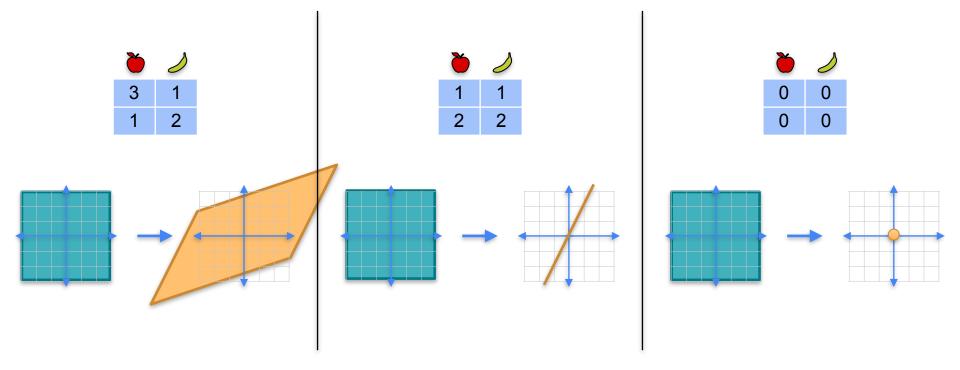


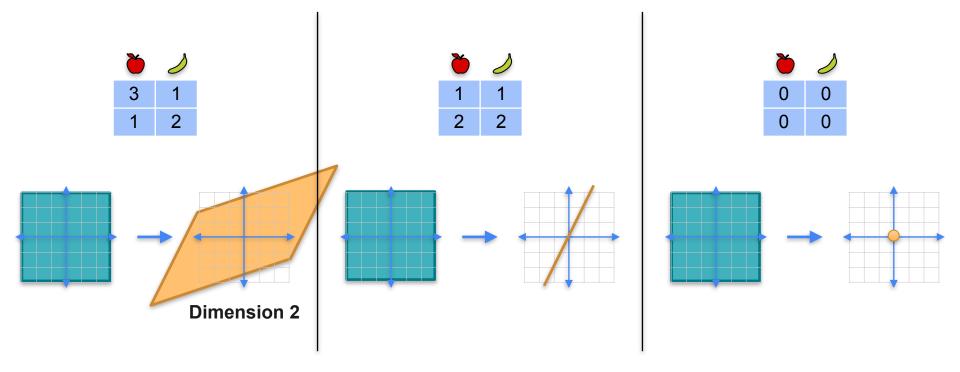
Singular and non-singular transformations

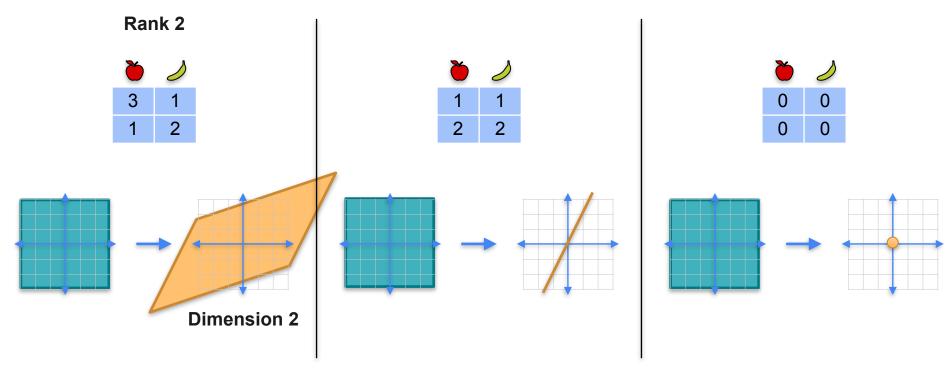


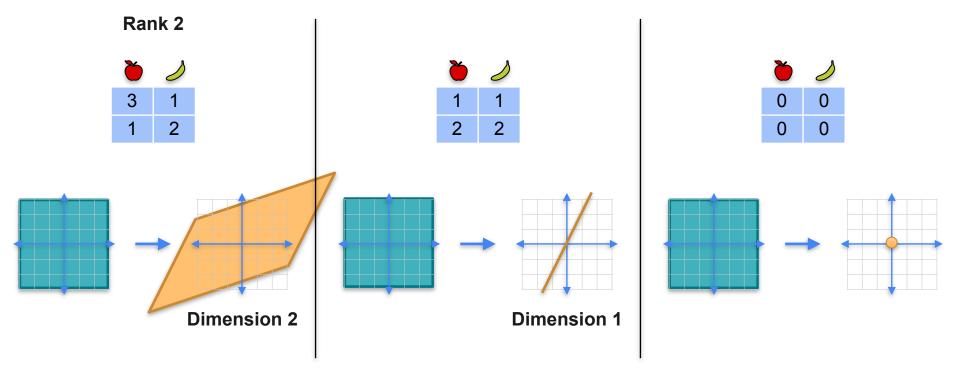
Singular and non-singular transformations

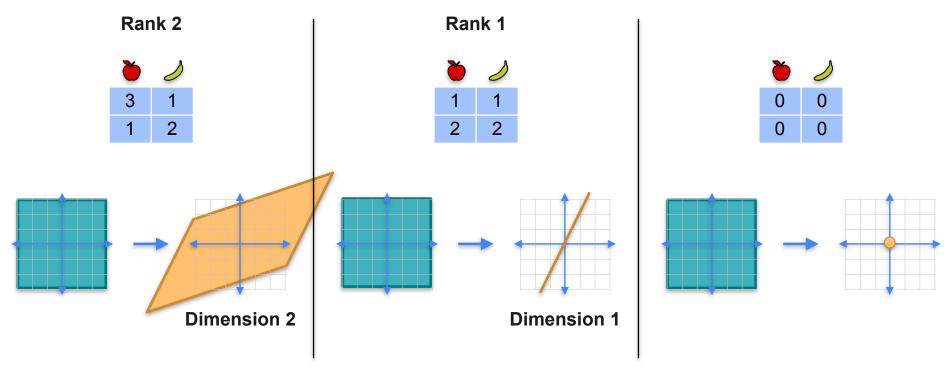


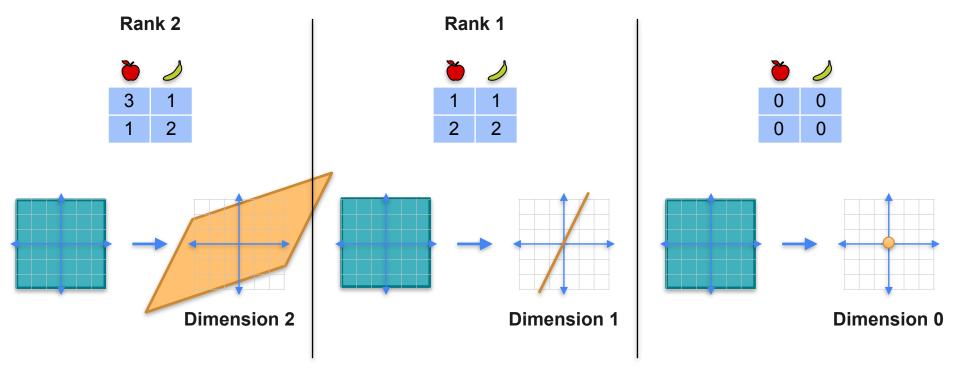


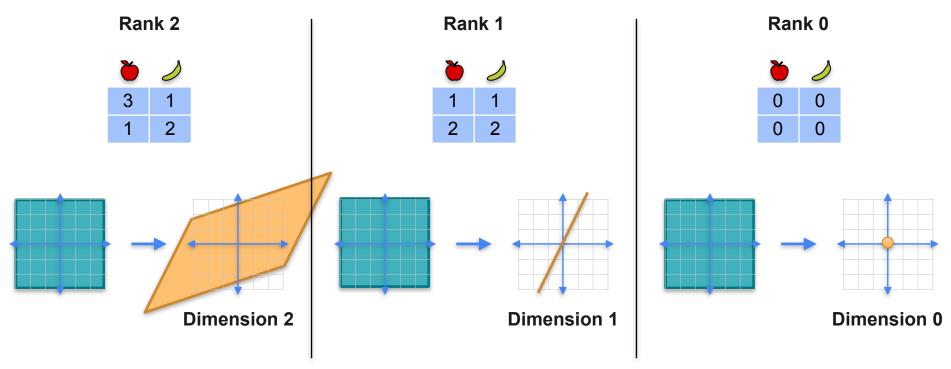








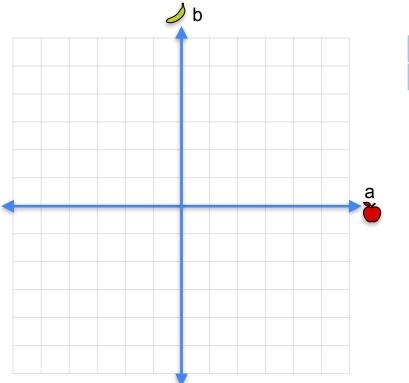


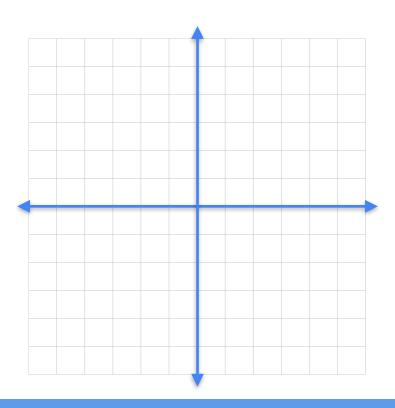


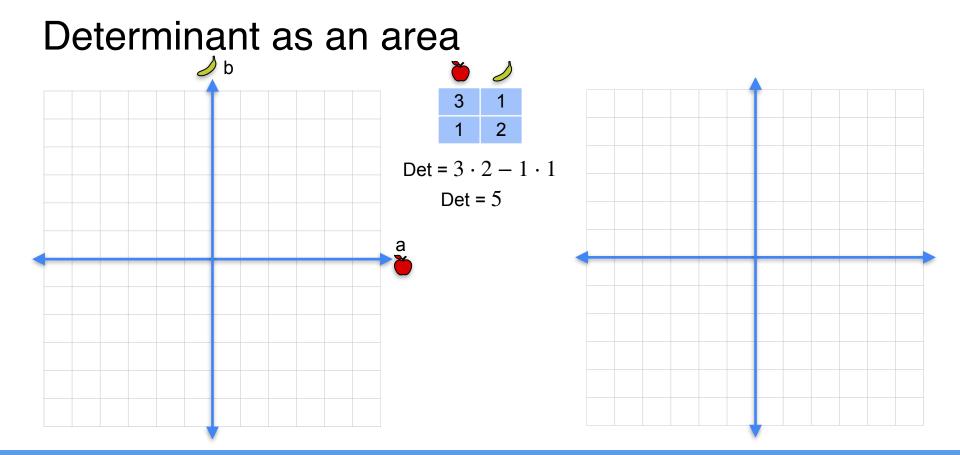
Determinants and Eigenvectors

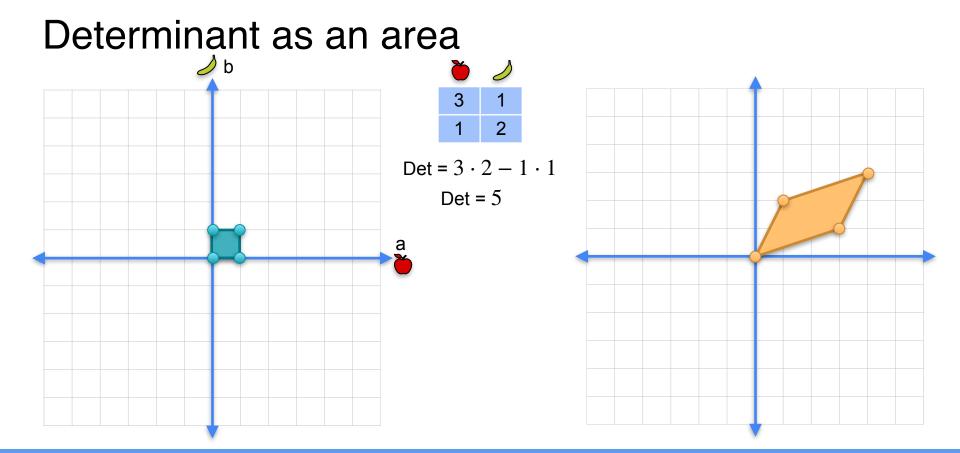
Determinant as an area

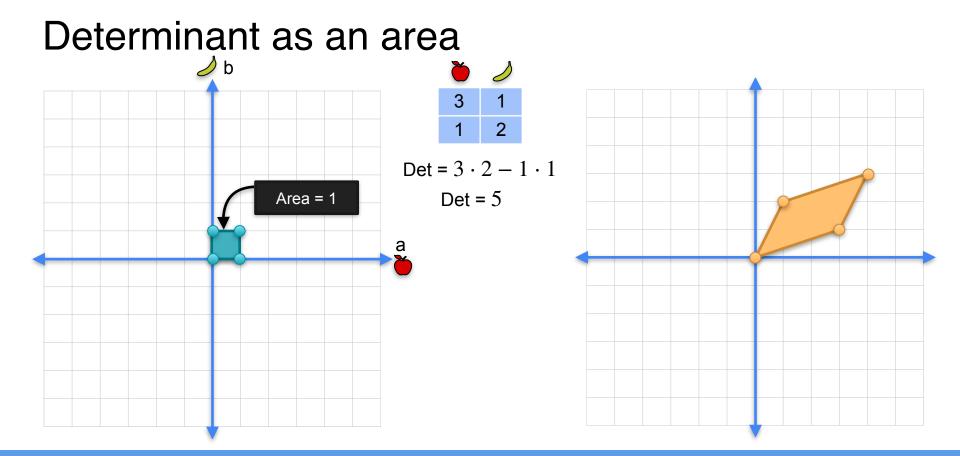
 \mathcal{I}

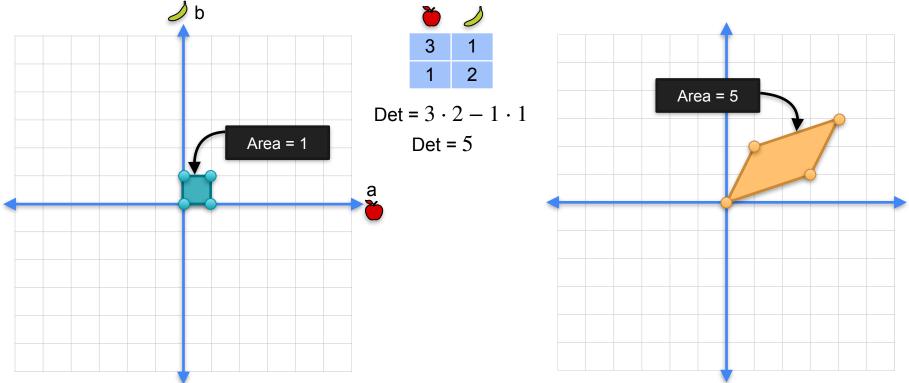










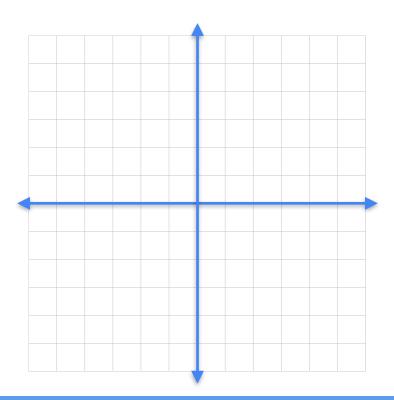


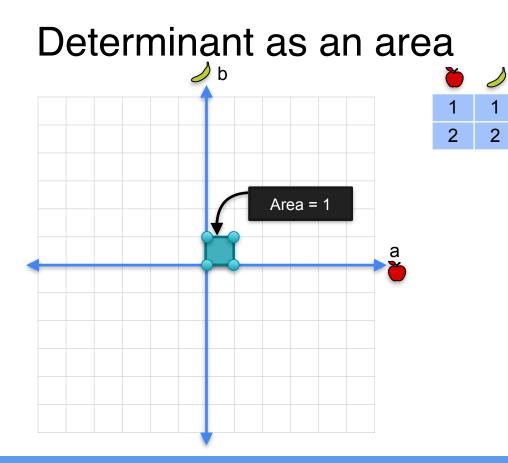
Determinant as an area 🕗 b 2 2 Area = 1 а

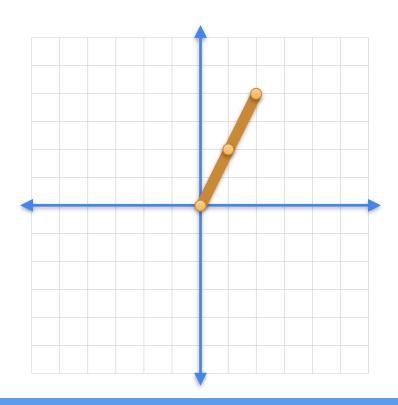
 \mathcal{I}

1

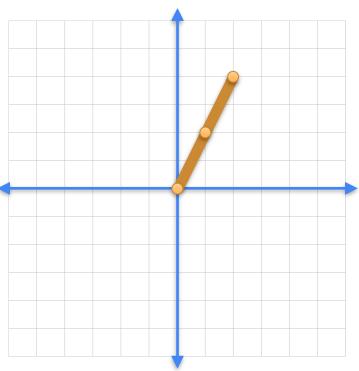
2

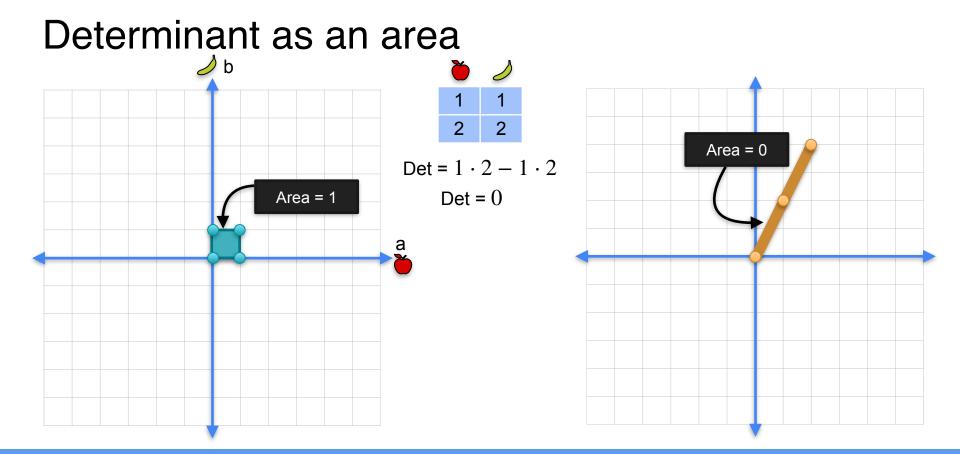


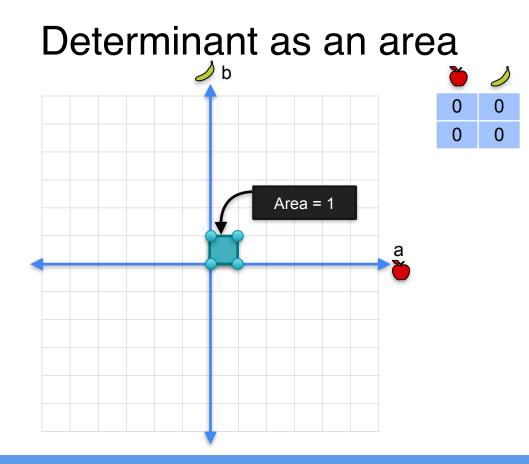


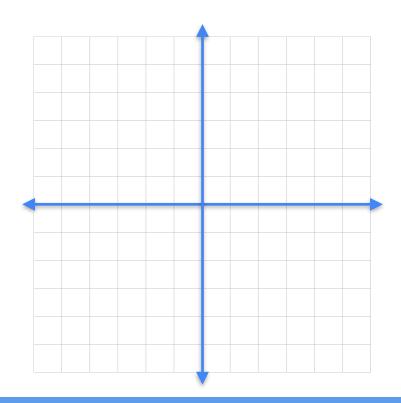


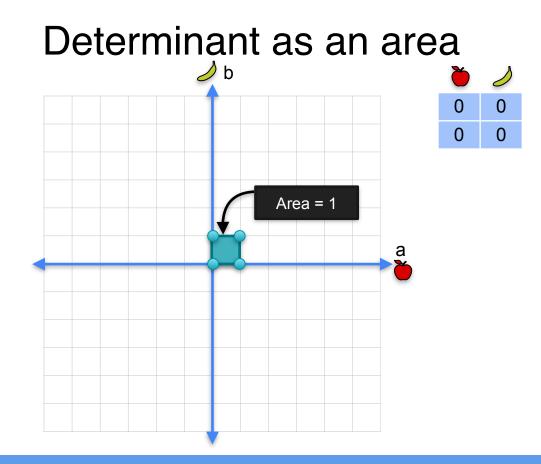
Determinant as an area b 1 1 2 2Det = $1 \cdot 2 - 1 \cdot 2$ Det = 0 a

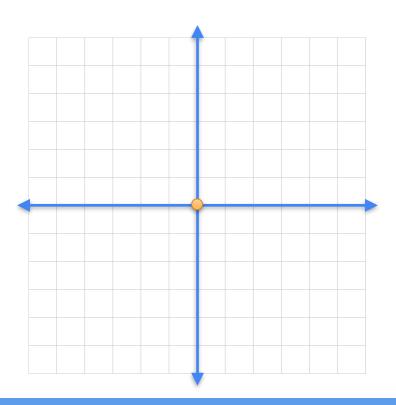


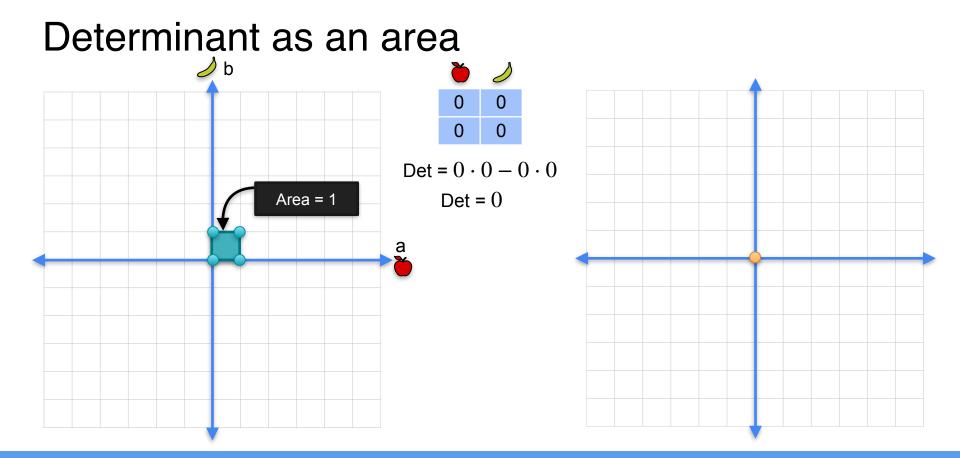


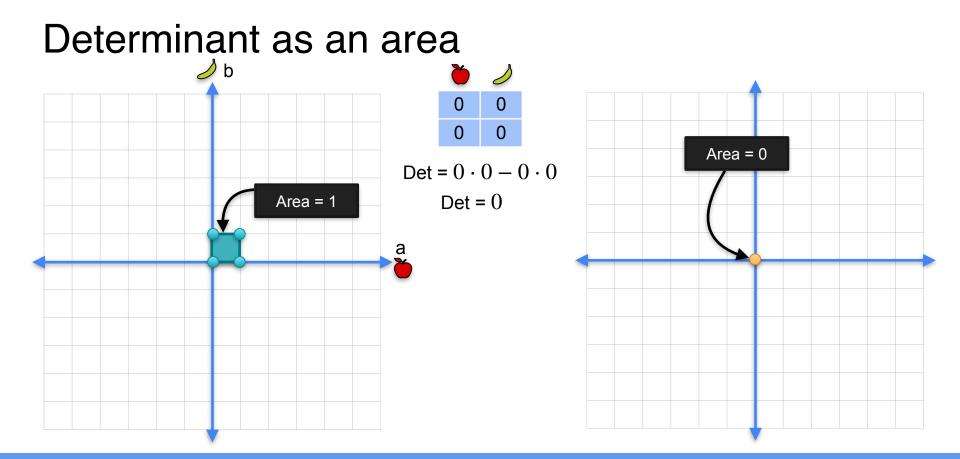


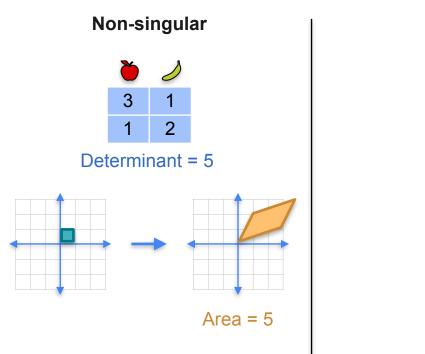


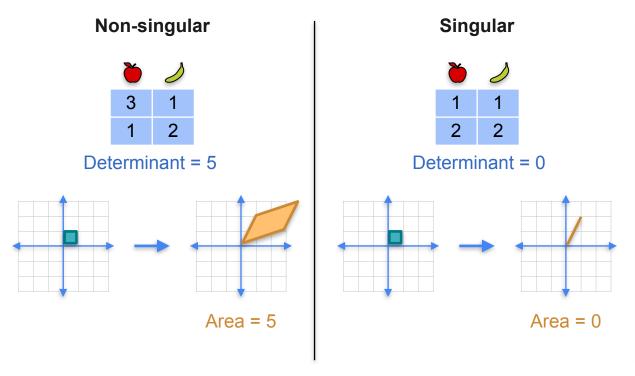


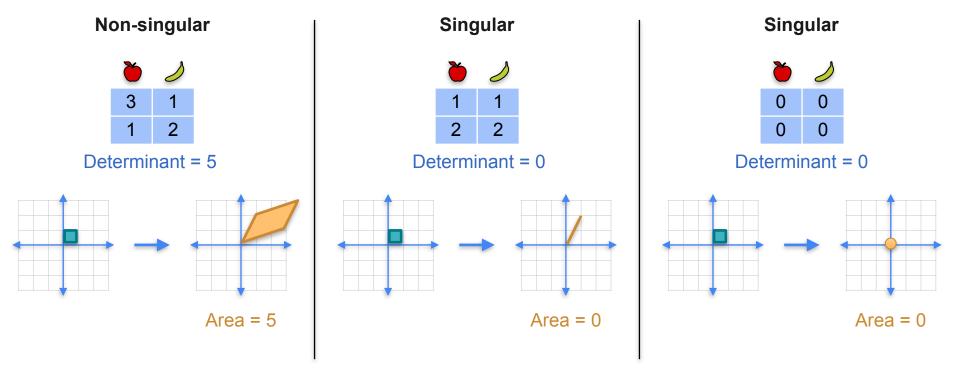




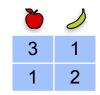




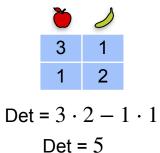




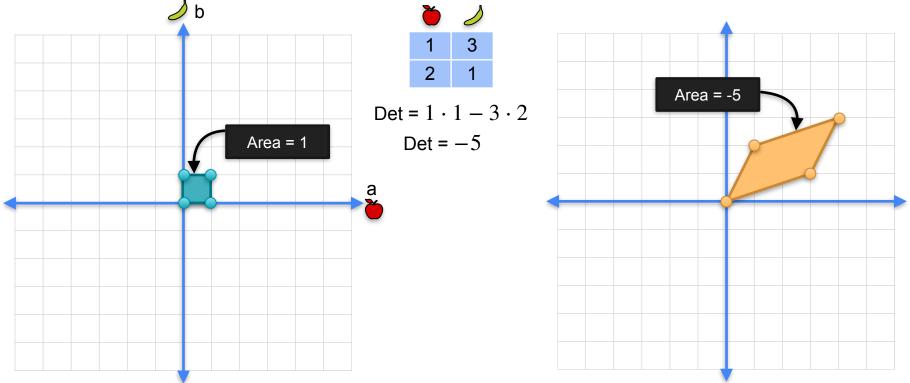
Negative determinants?

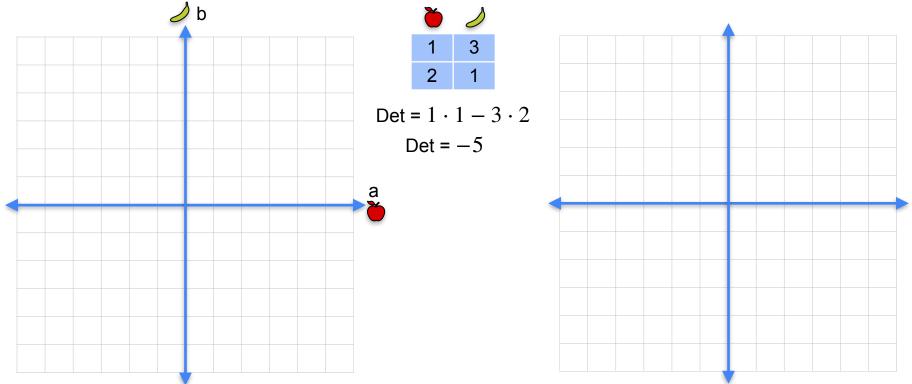


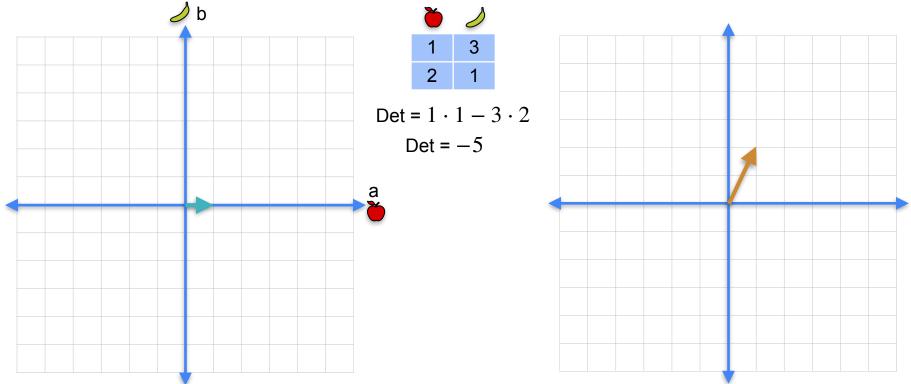
Negative determinants?



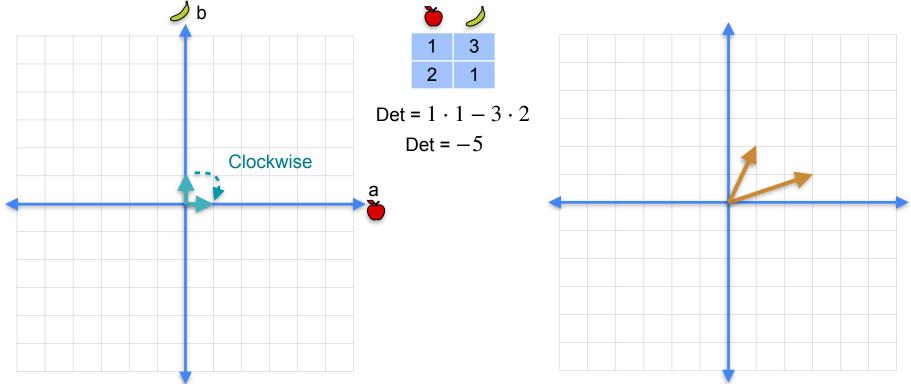
Negative determinants?



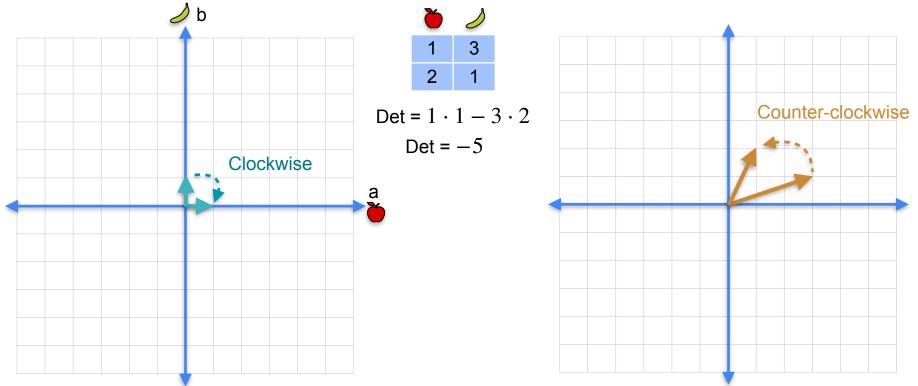




Determinant as an area 🕗 b \mathcal{I} X 3 1 2 1 Det = $1 \cdot 1 - 3 \cdot 2$ Det = -5а



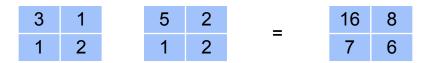
Determinant as an area

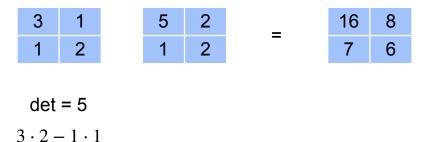


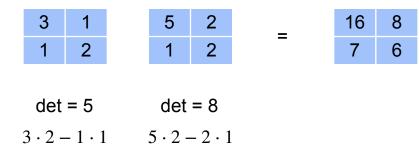
Determinant as an area ∂b \mathcal{A} 3 2 1 Counter-clockwise Det = $1 \cdot 1 - 3 \cdot 2$ Det = -5Clockwise а Negative

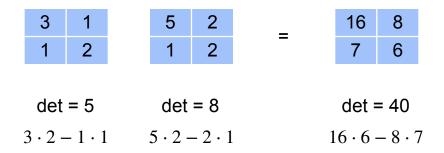
Determinants and Eigenvectors

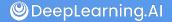
Determinant of a product



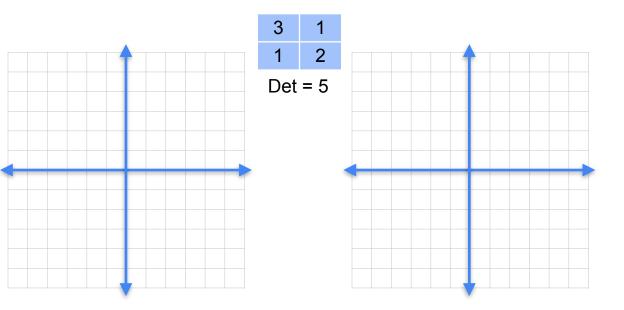


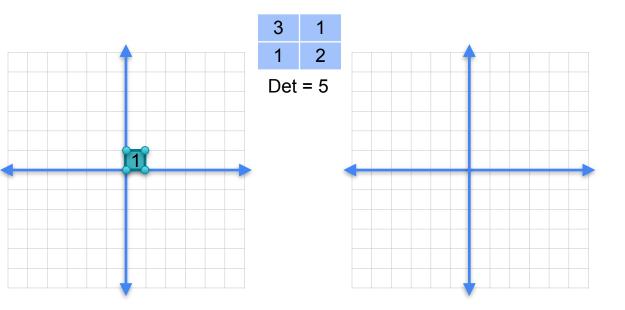


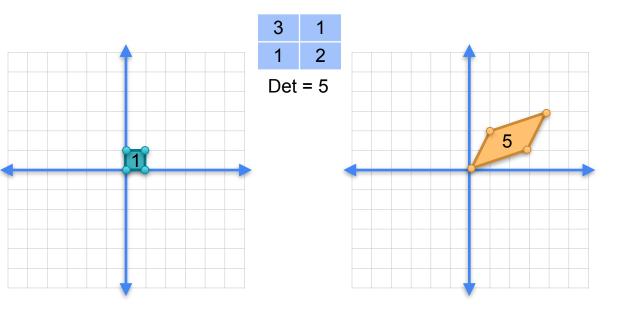


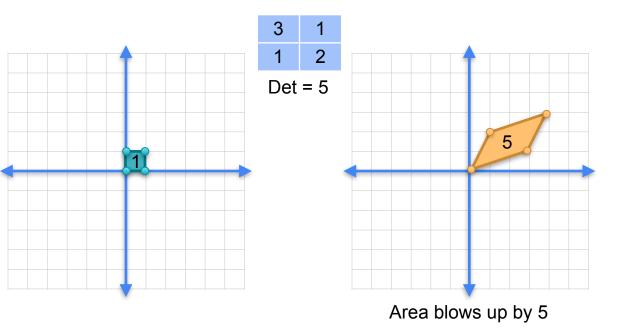


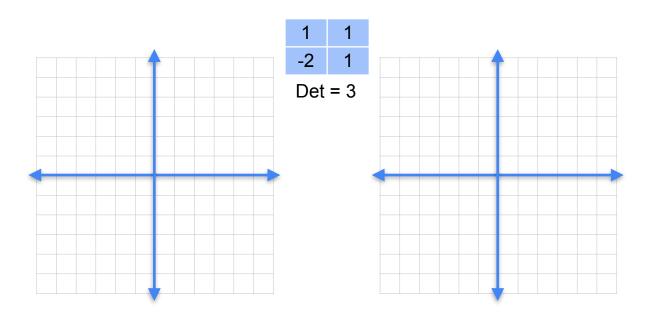
$\det(AB) = \det(A) \det(B)$

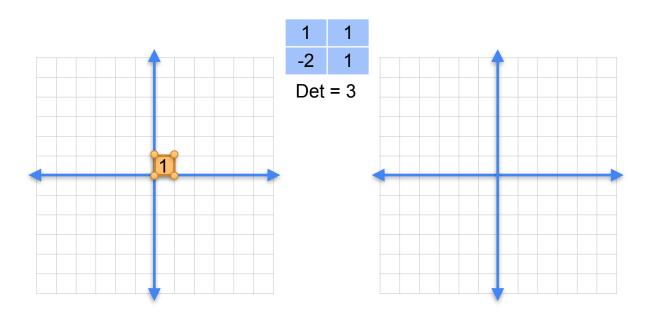


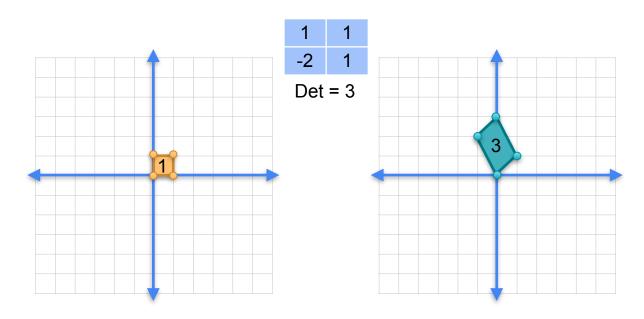


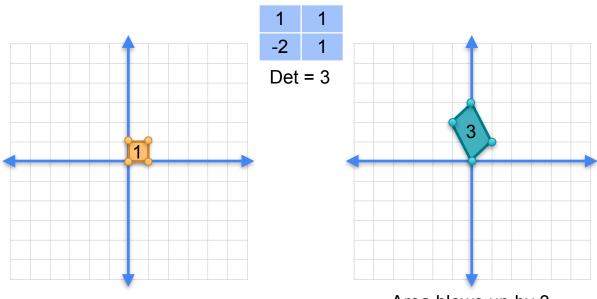




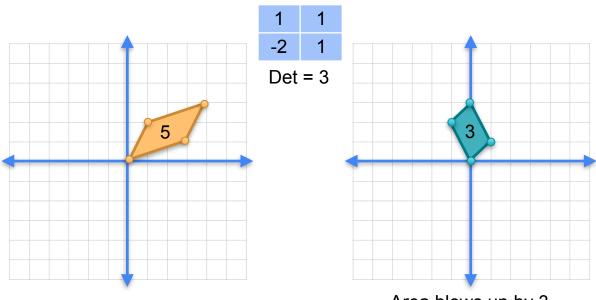




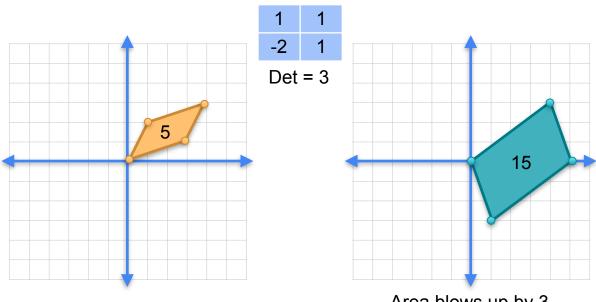




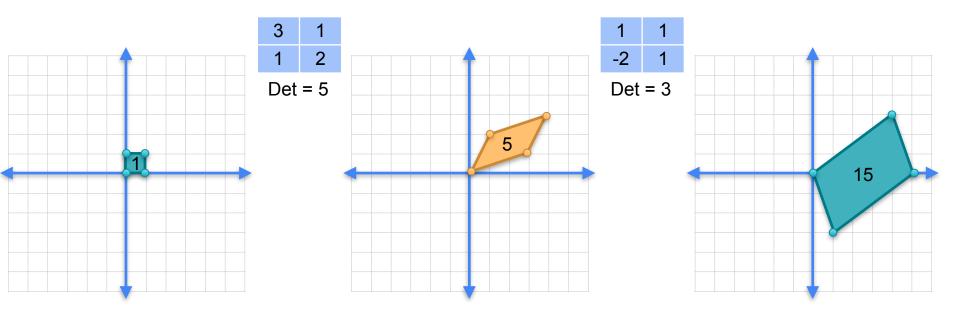
Area blows up by 3

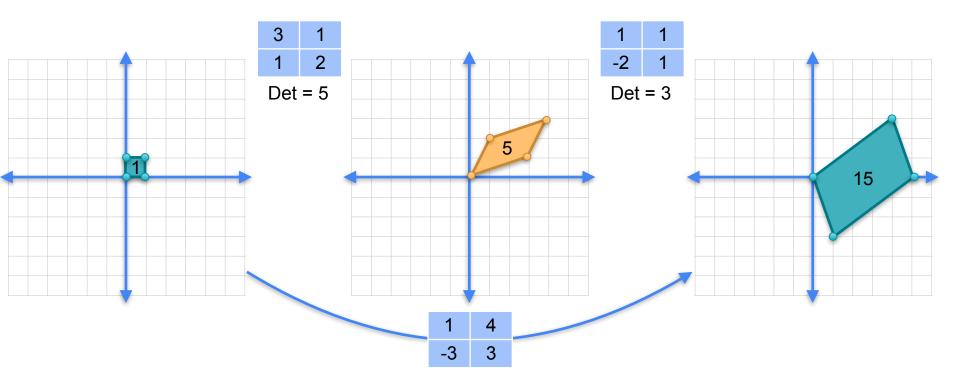


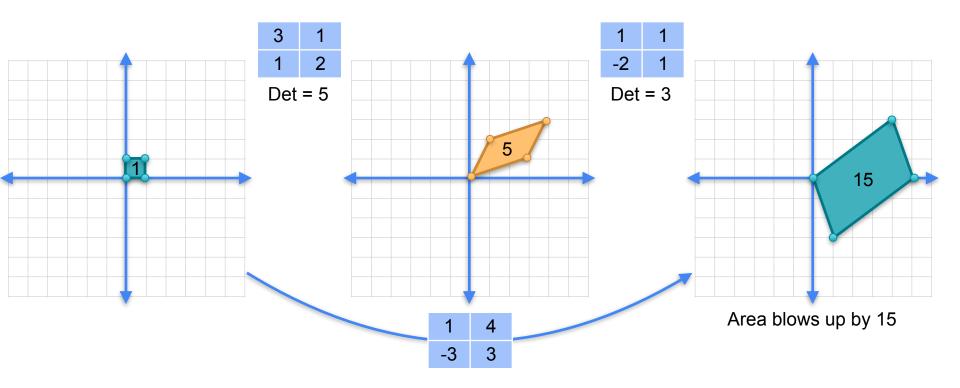
Area blows up by 3

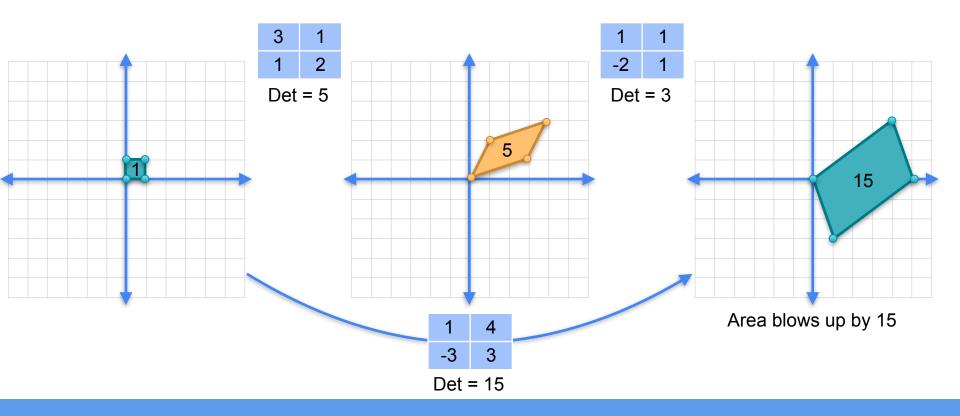


Area blows up by 3









Quiz

- The product of a singular and a non-singular matrix (in any order) is:
 - Singular
 - Non-singular
 - Could be either one

Solution

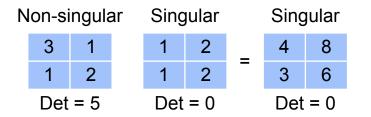
If A is non-singular and B is singular, then det(AB) = det(A) x det(B) = 0, since det(B) = 0. Therefore det(AB) = 0, so AB is singular.

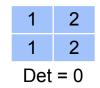
5

$5 \cdot 0$

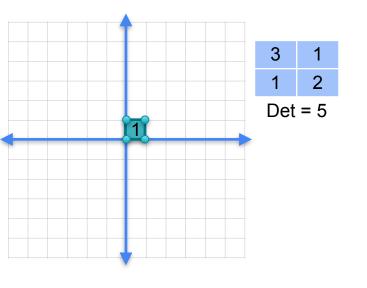
$5 \cdot 0 = 0$

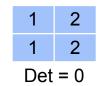
When one factor is singular...



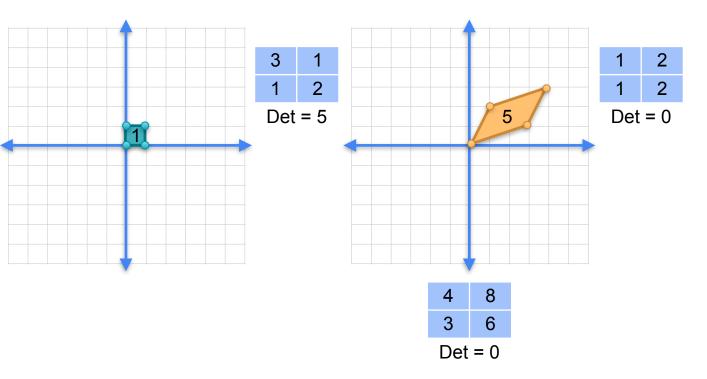


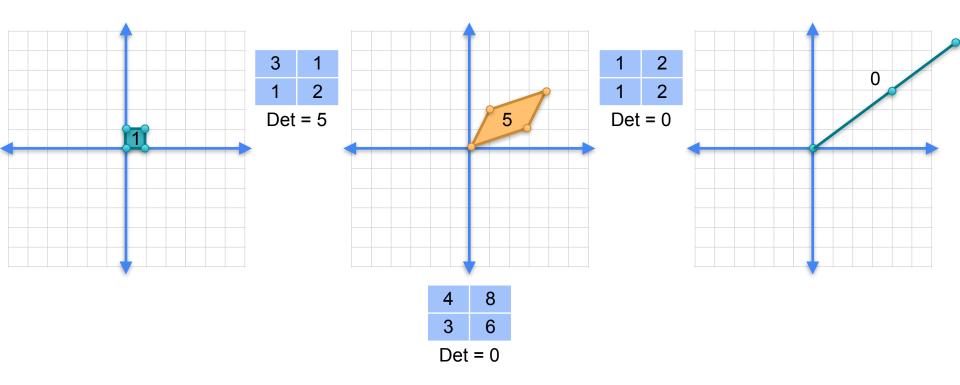
4	8
3	6
Det = 0	

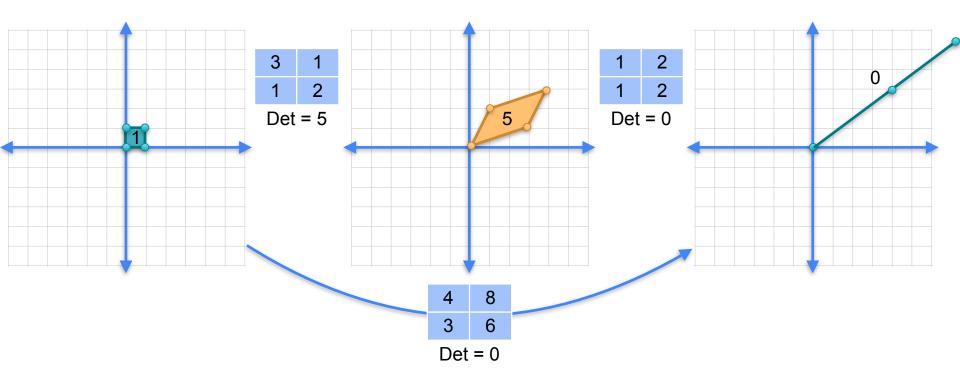


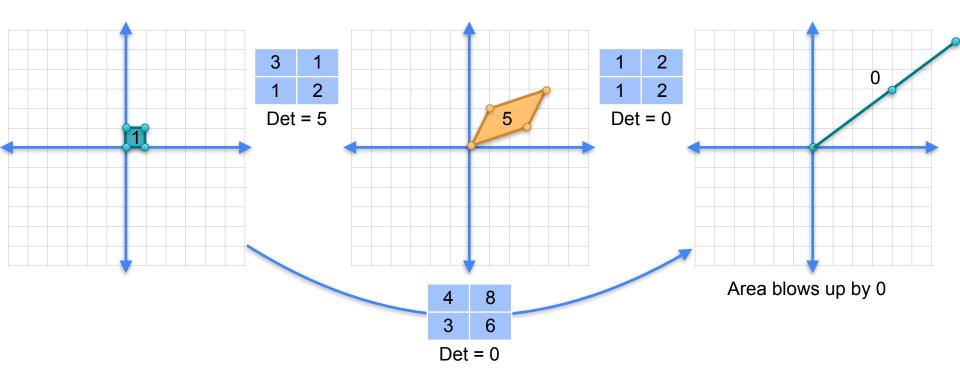


4	8
3	6
Det = 0	









Determinants and Eigenvectors

Determinant of inverse

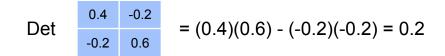
Quiz

• Find the determinants of the following matrices

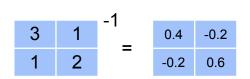
0.4	-0.2
-0.2	0.6

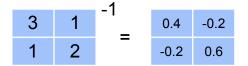
0.25	-0.25
-0.125	0.625

Solution

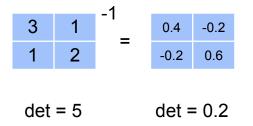


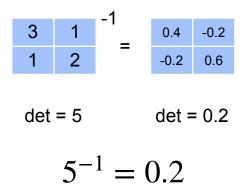
Det
$$\begin{bmatrix} 0.25 & -0.25 \\ -0.125 & 0.625 \end{bmatrix}$$
 = (0.25)(0.625) - (-0.125)(-0.25) = 0.125





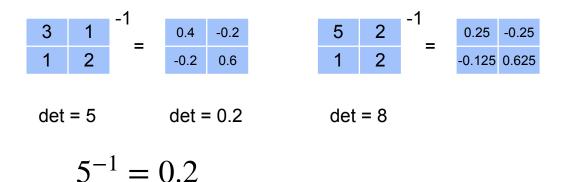
det = 5

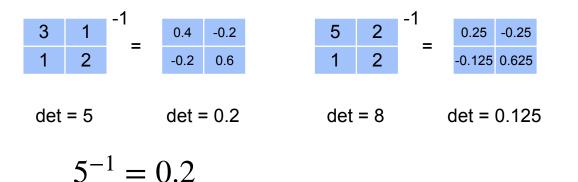


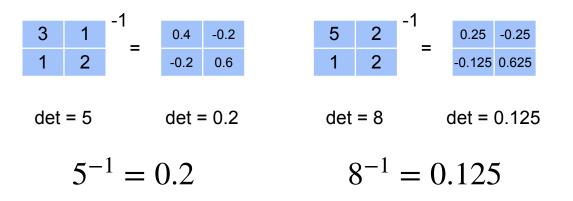


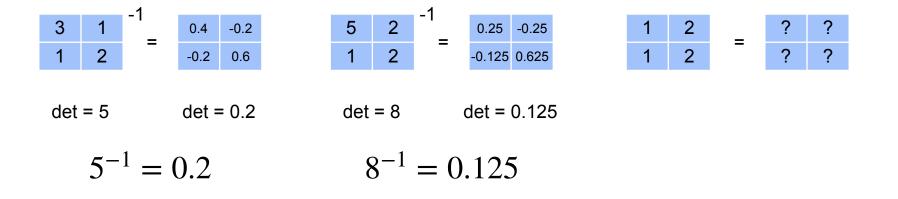
det = 5 det = 0.2

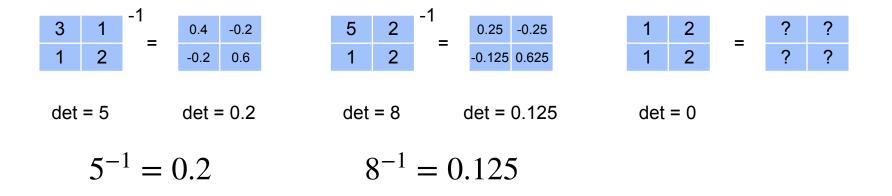
 $5^{-1} = 0.2$

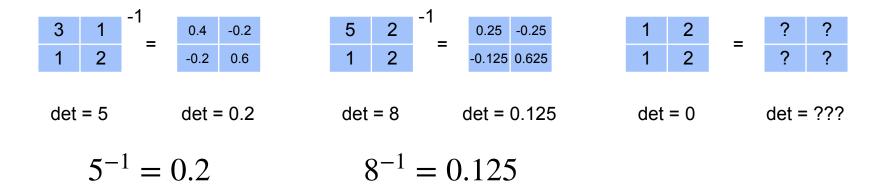


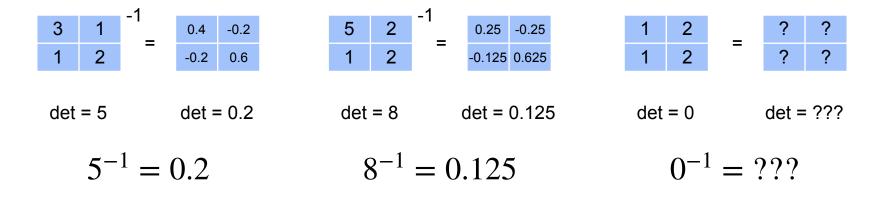




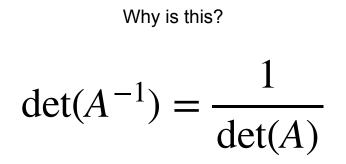


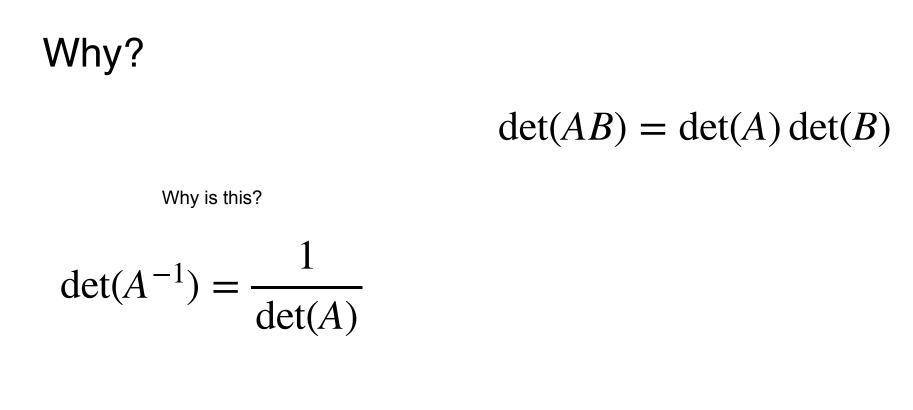




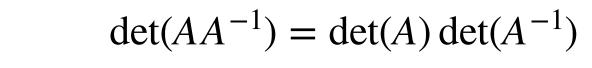


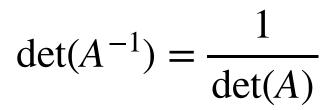
$$\det(A^{-1}) = \frac{1}{\det(A)}$$





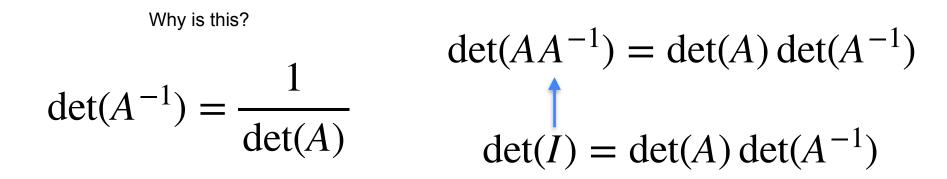
$\det(AB) = \det(A) \det(B)$



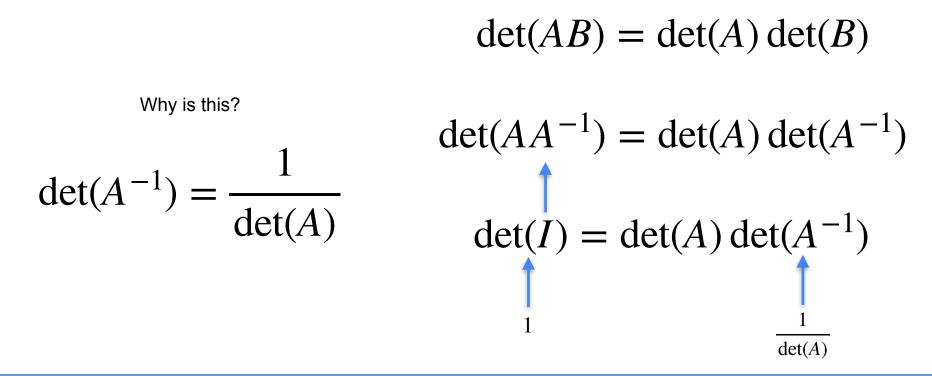


Why is this?

$\det(AB) = \det(A) \det(B)$



det(AB) = det(A) det(B)Why is this? $\det(AA^{-1}) = \det(A)\det(A^{-1})$ $\det(A^{-1}) = \frac{1}{\det(A)}$ $\det(I) = \det(A) \det(A^{-1})$ det(A)



Determinant of the identity matrix

det
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1 \cdot 1 - 0 \cdot 0 = 1$$

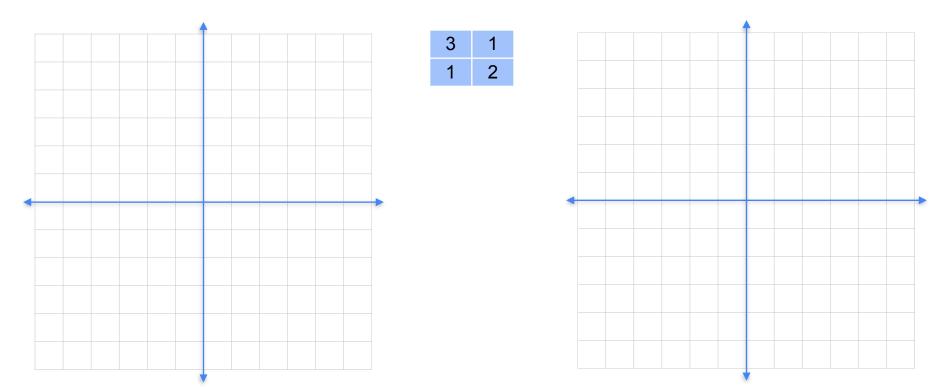
Determinant of the identity matrix

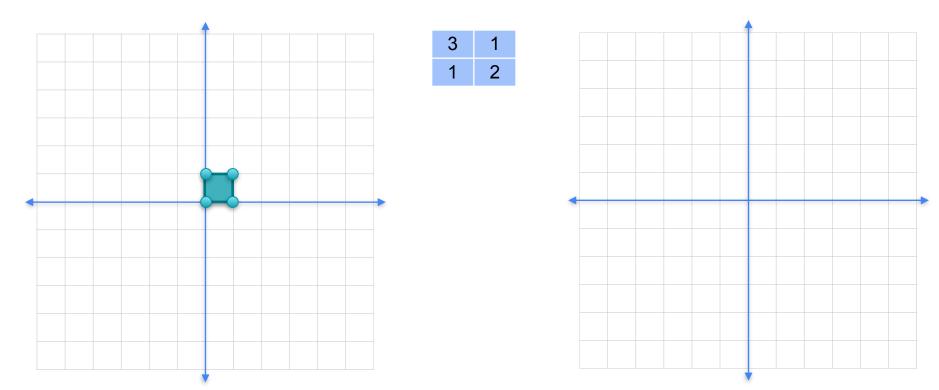
det
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1 \cdot 1 - 0 \cdot 0 = 1$$

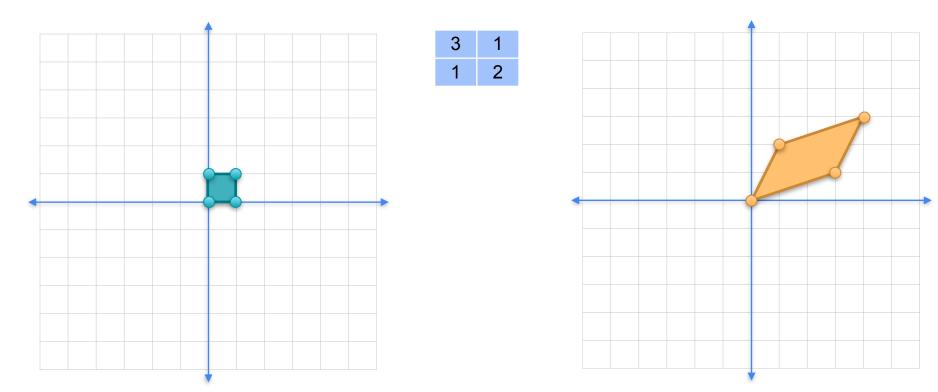
$$\det(I) = 1$$

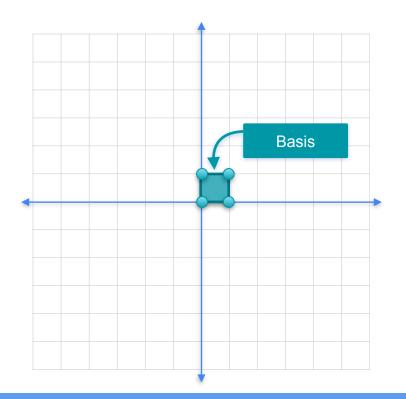
Determinants and Eigenvectors

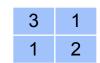
Bases

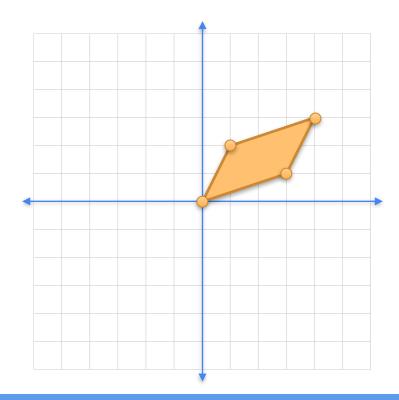


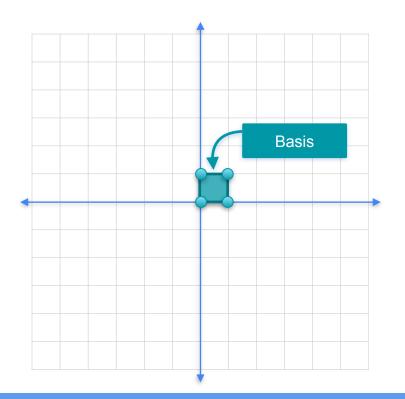


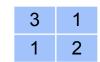


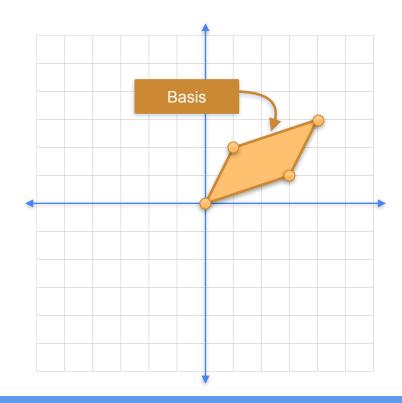


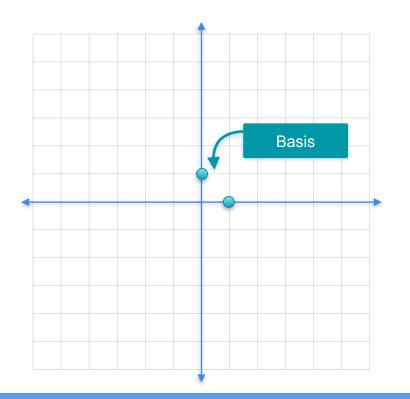


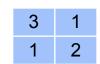


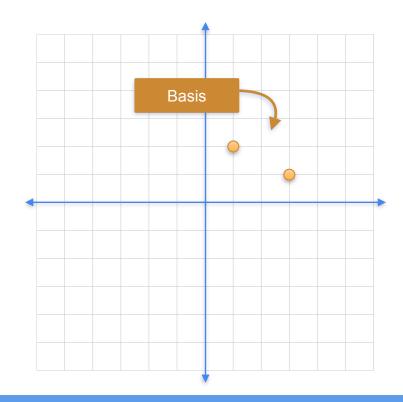


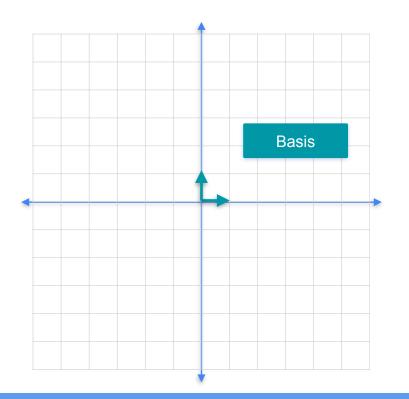


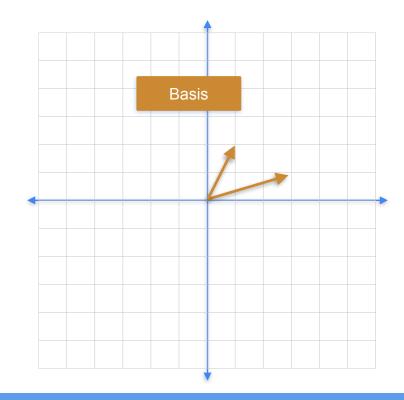


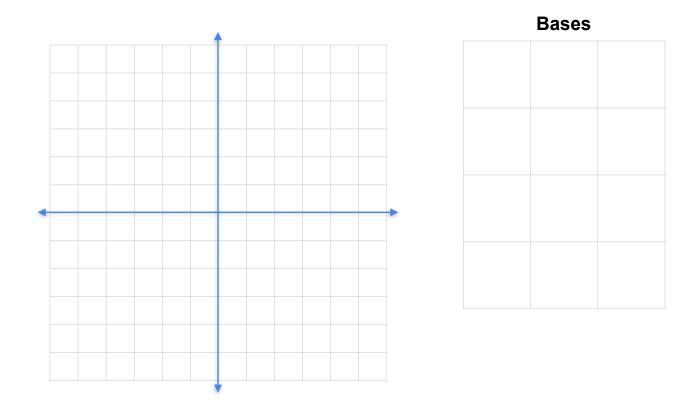


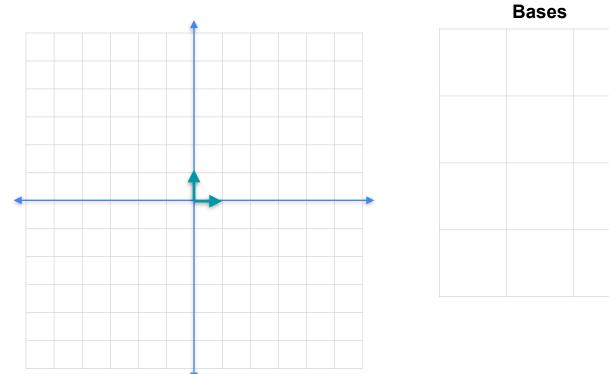


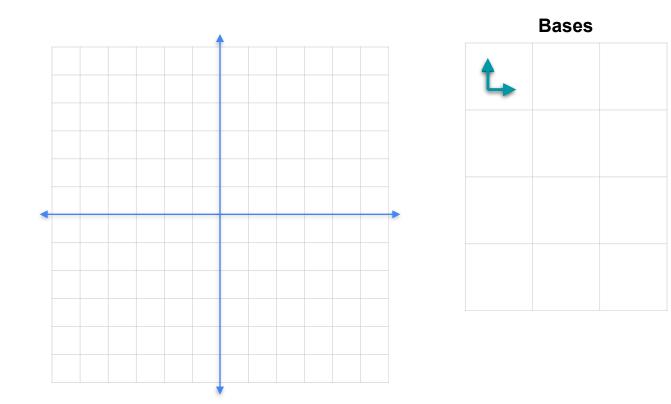


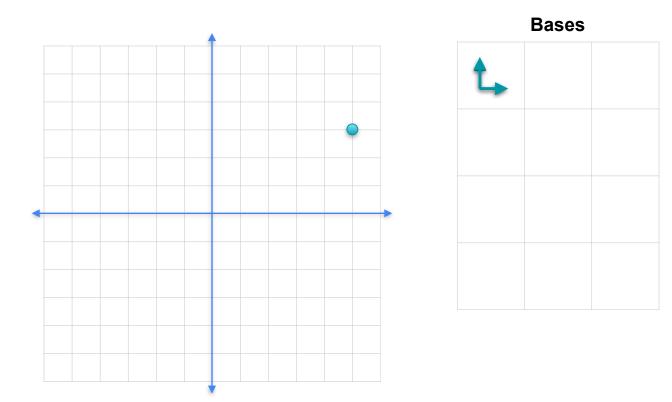


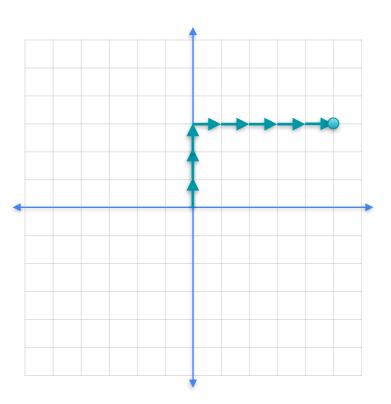




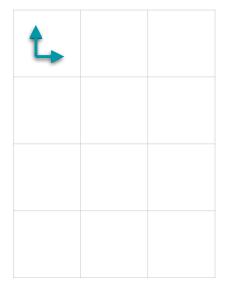


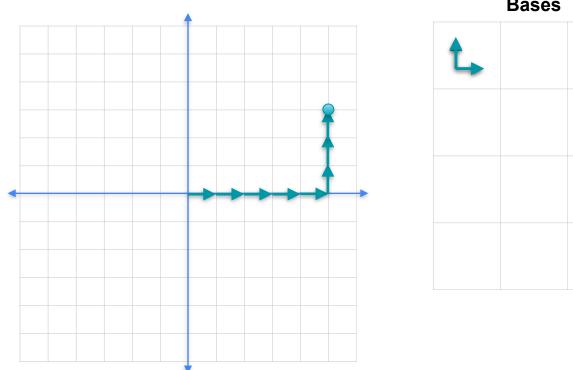




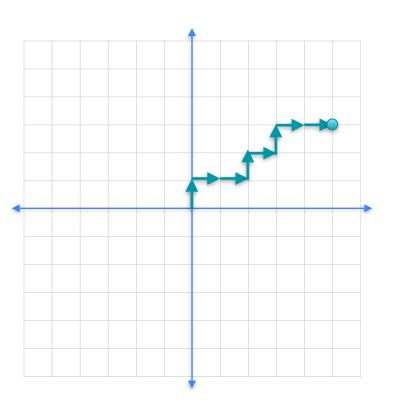


Bases

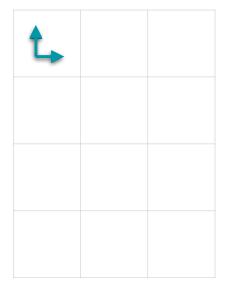


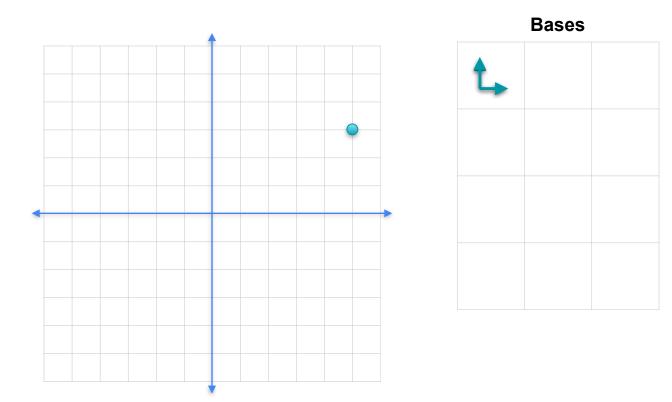


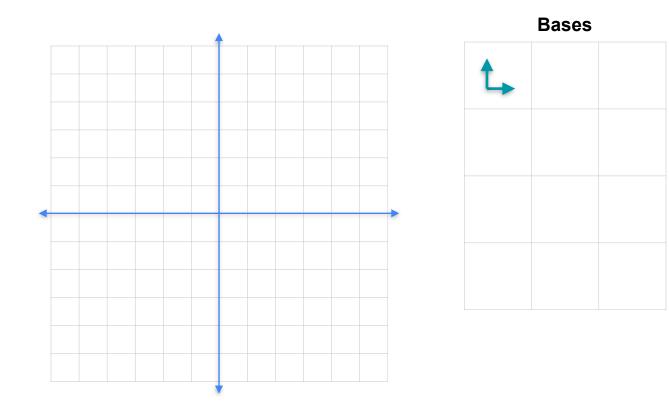
Bases

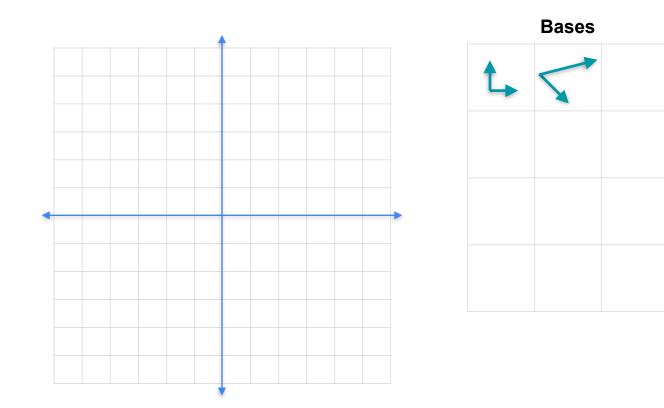


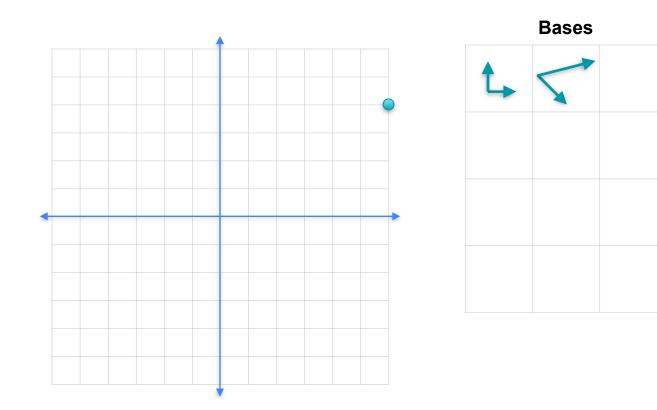
Bases

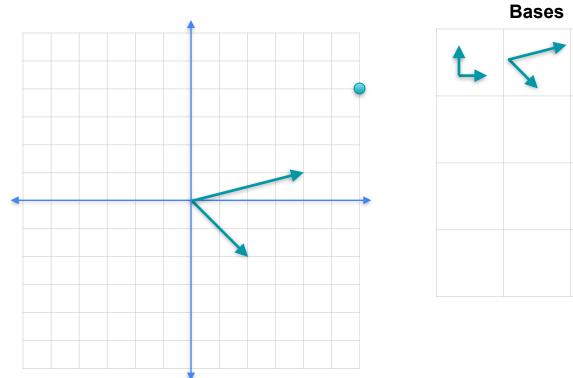


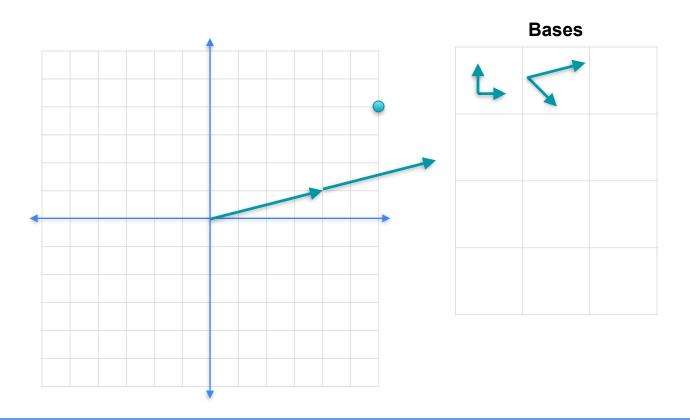


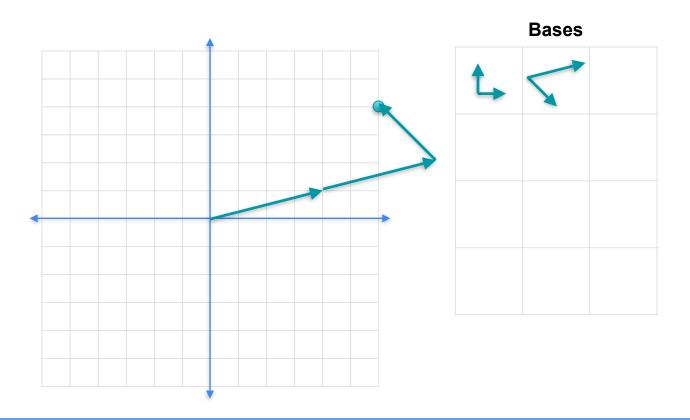


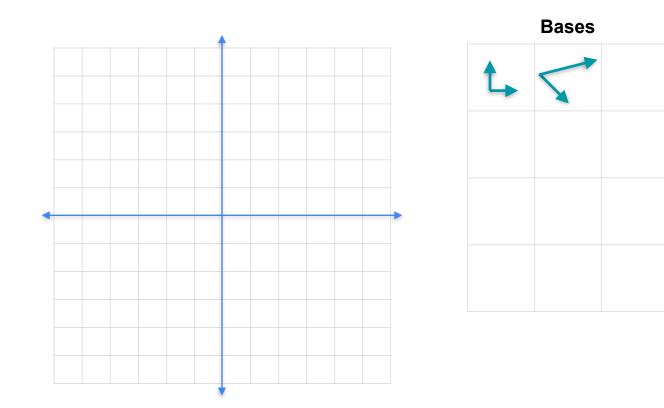


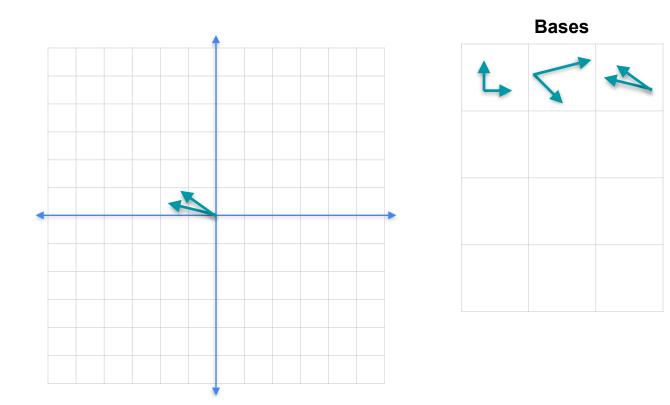




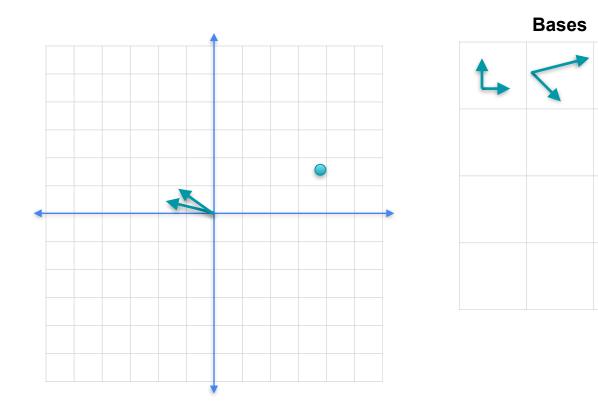




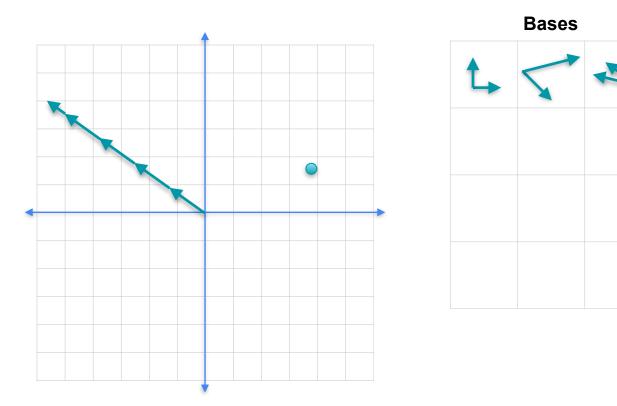


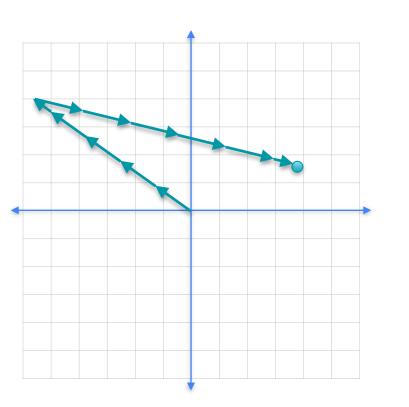


OcepLearning.Al

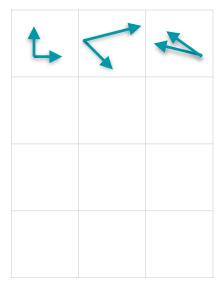


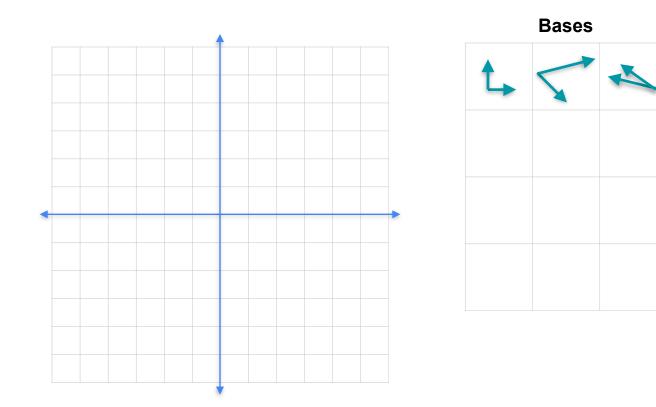
OcepLearning.Al



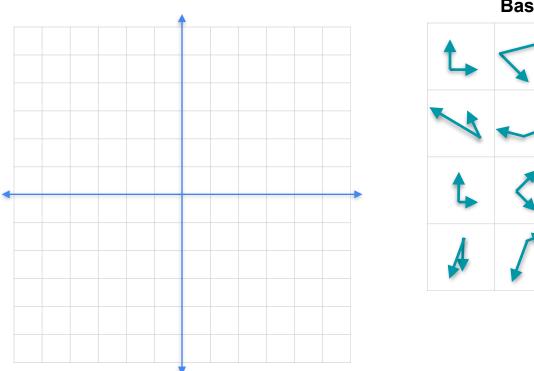


Bases



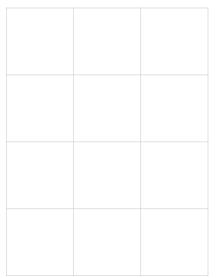


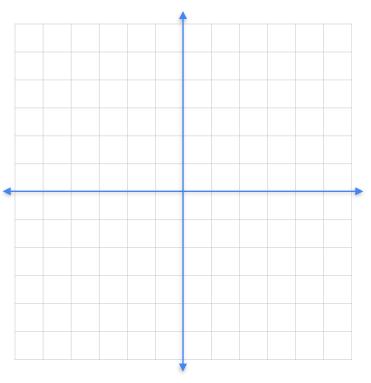
OcepLearning.Al



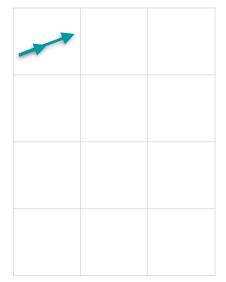
Bases

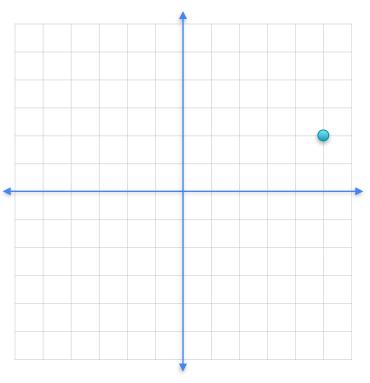
Not bases



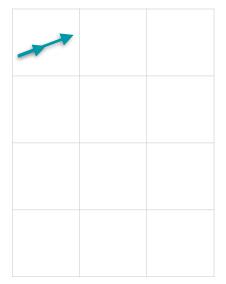


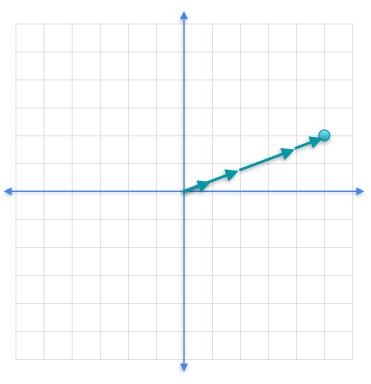
Not bases



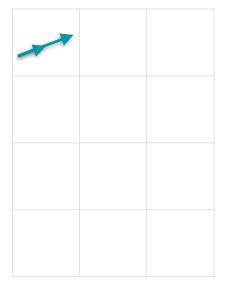


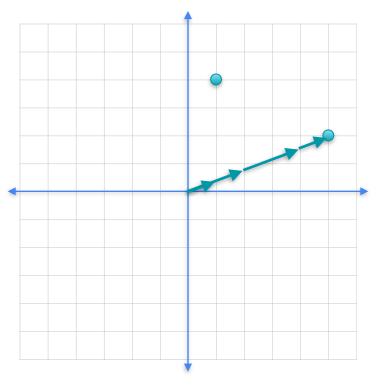
Not bases



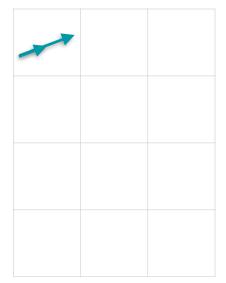


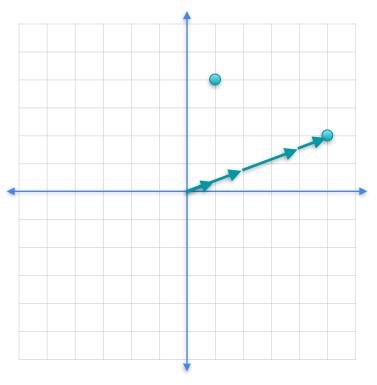
Not bases



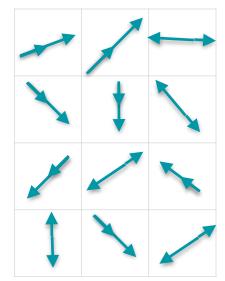


Not bases



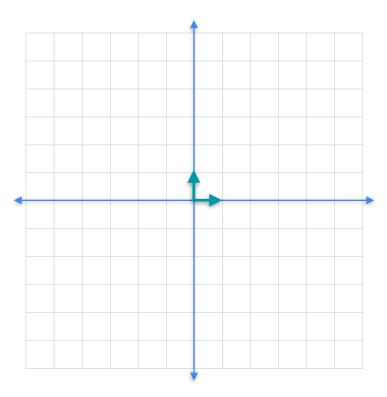


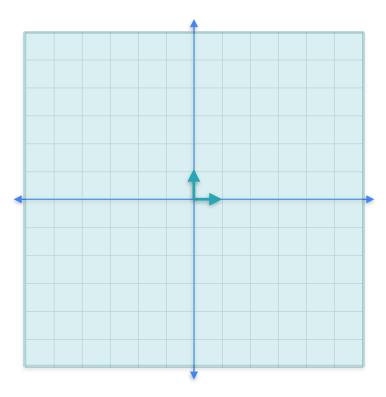
Not bases

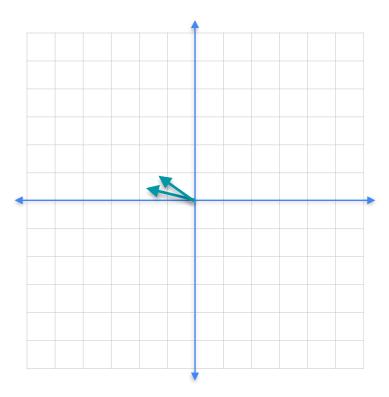


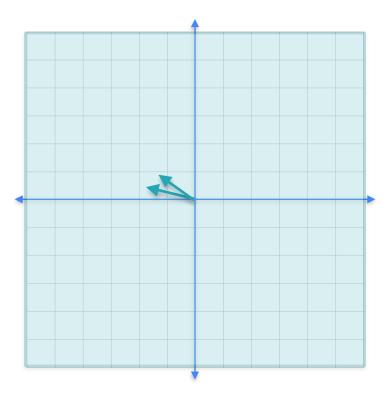
Determinants and Eigenvectors

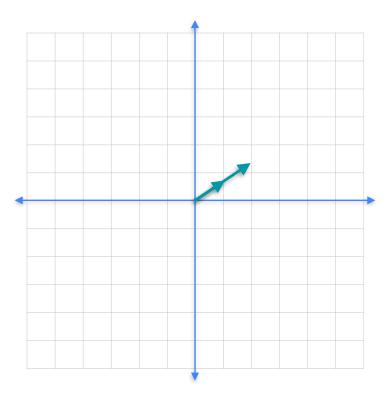
Span

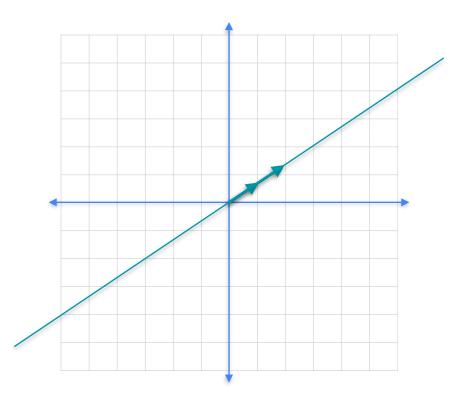


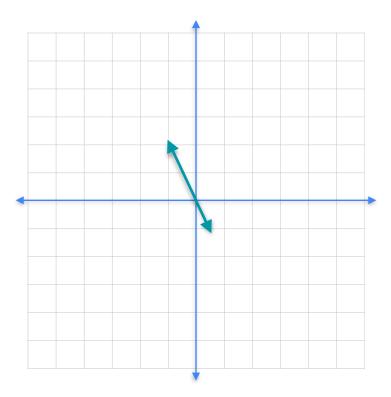


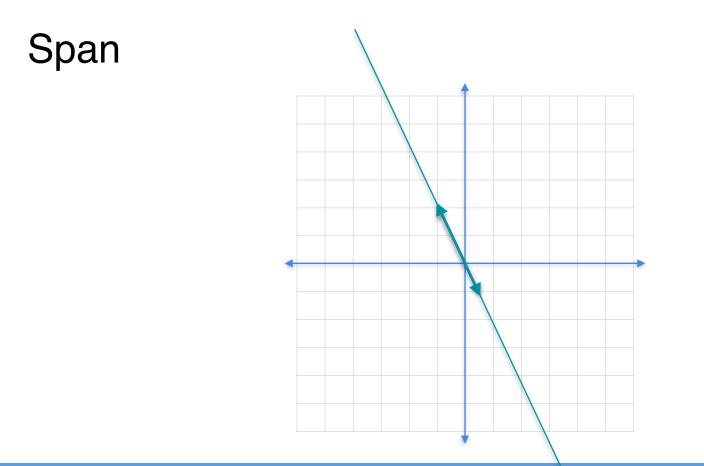


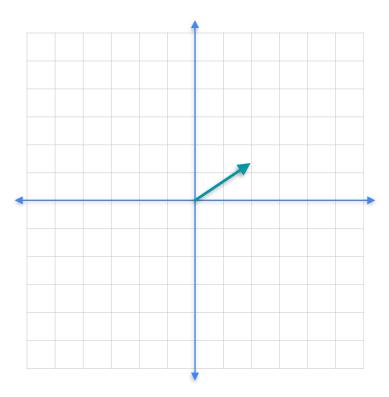


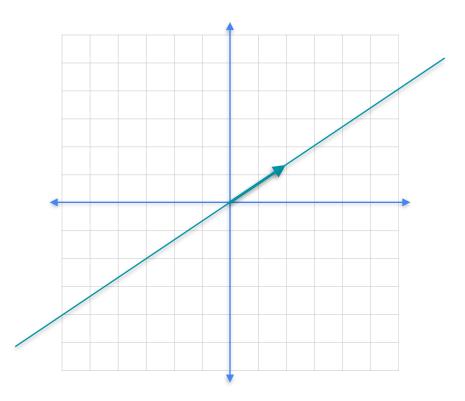




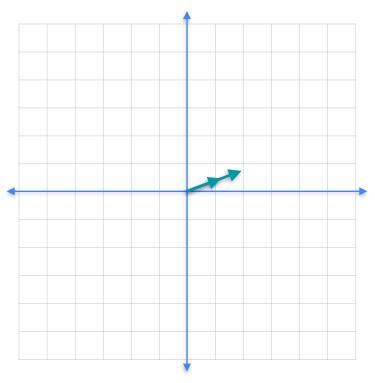




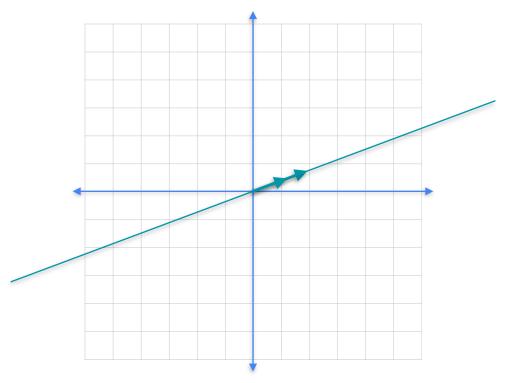




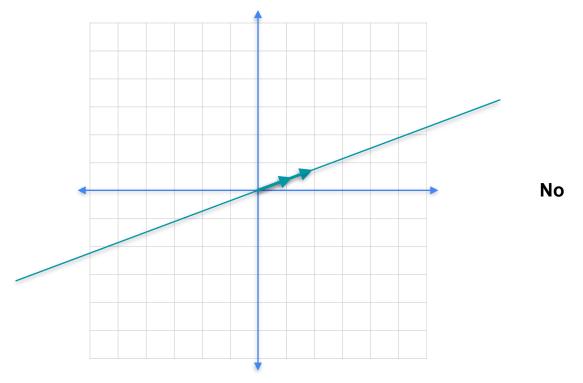
Is this a basis?



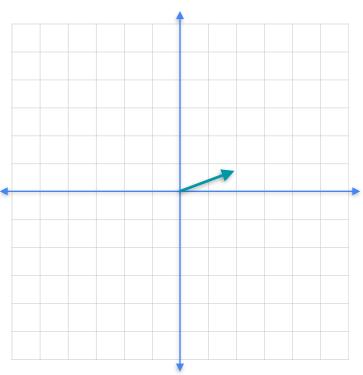
Is this a basis?



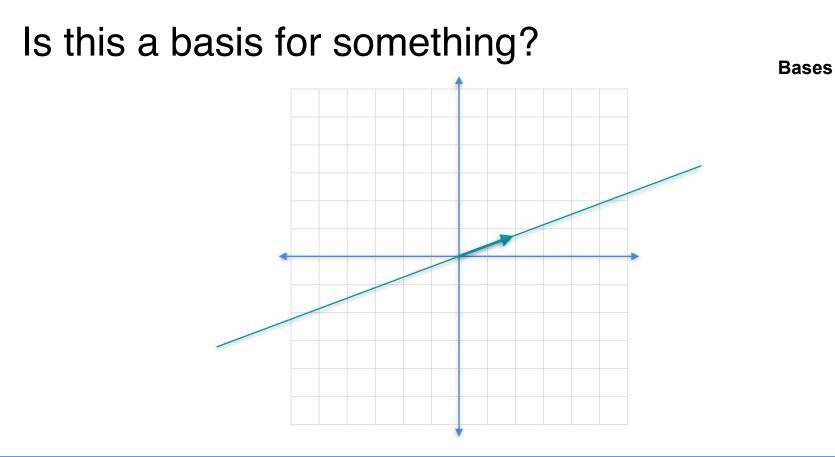
Is this a basis?



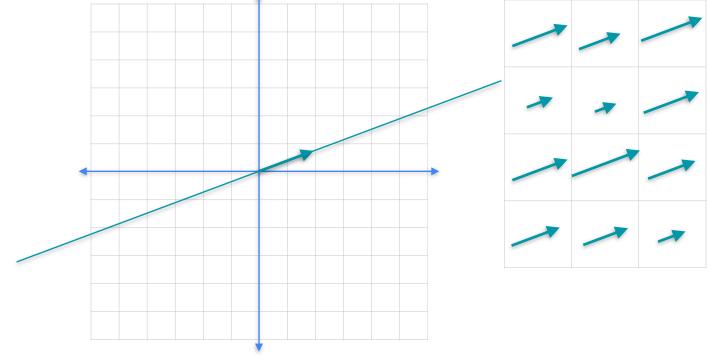
Is this a basis for something?

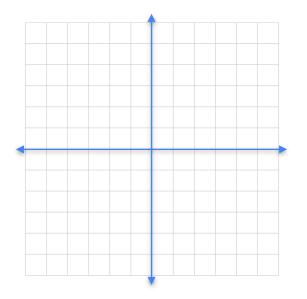


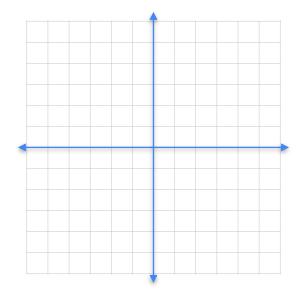
Bases

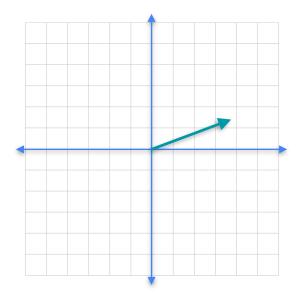


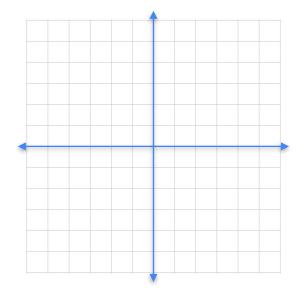
Is this a basis for something?

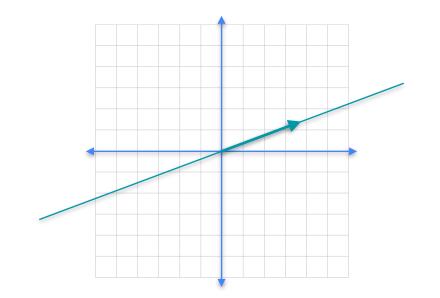


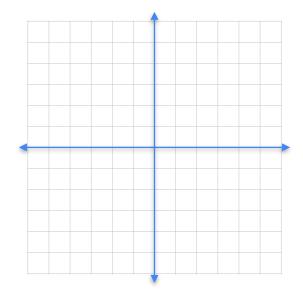


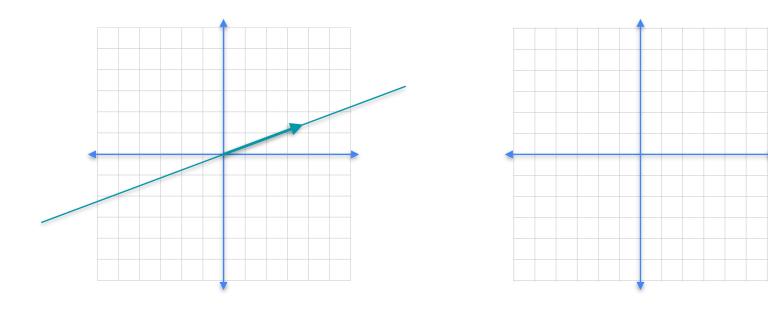




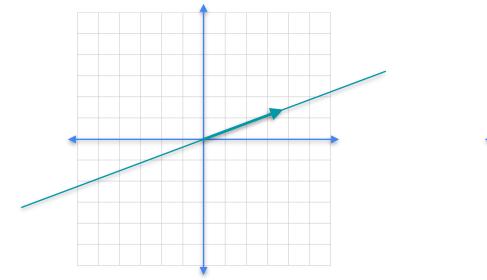


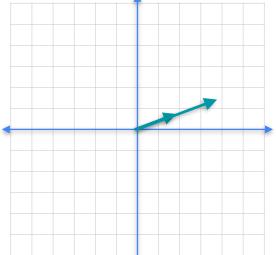




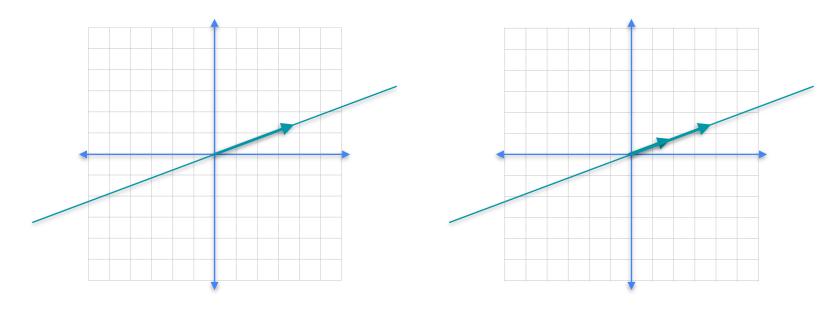


Basis

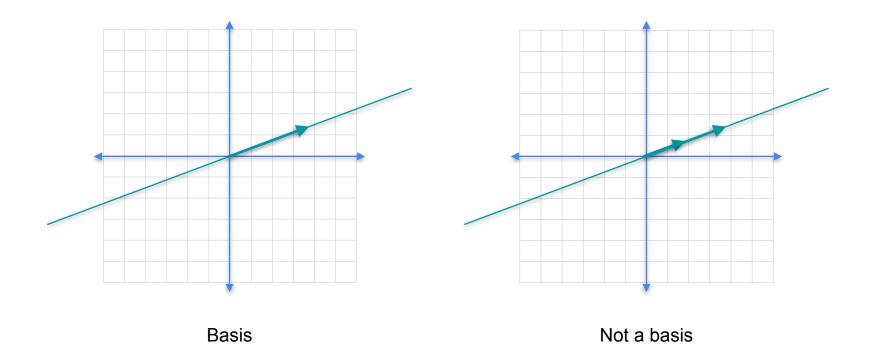


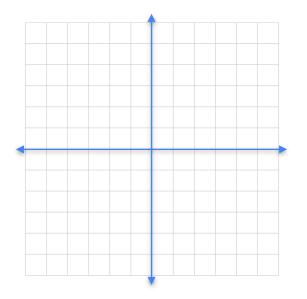


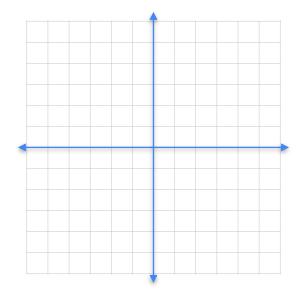
Basis

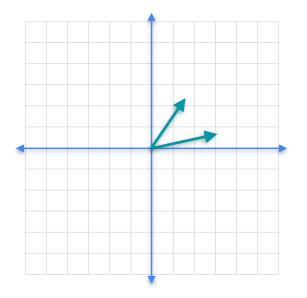


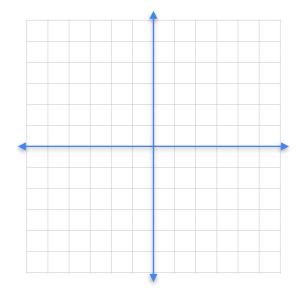
Basis

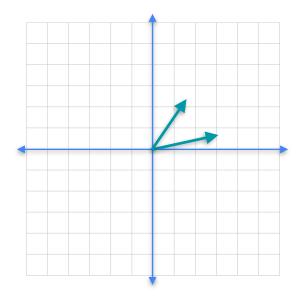


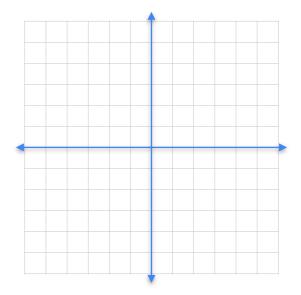


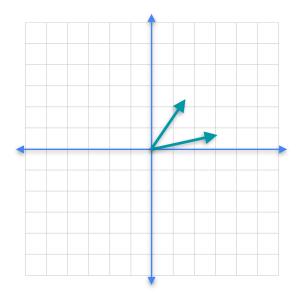


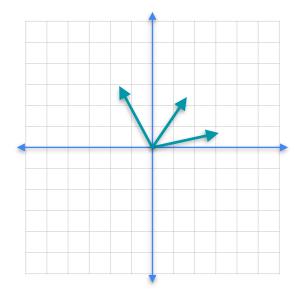




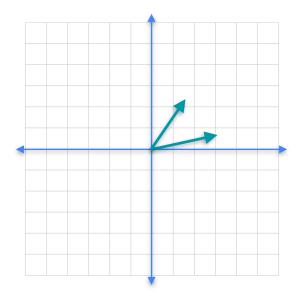


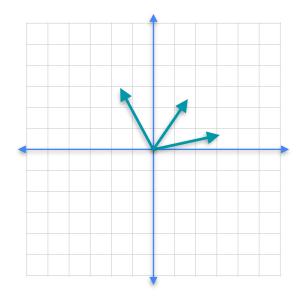






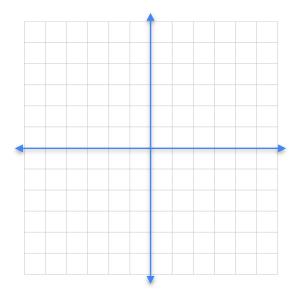
Basis

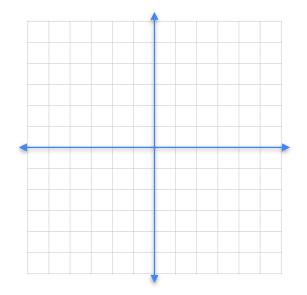


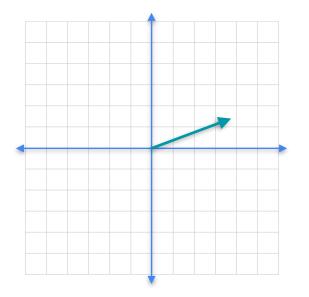


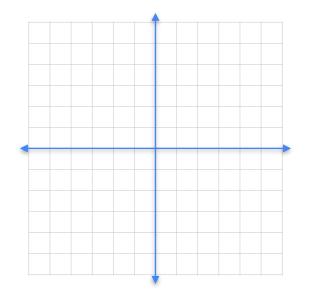
Basis

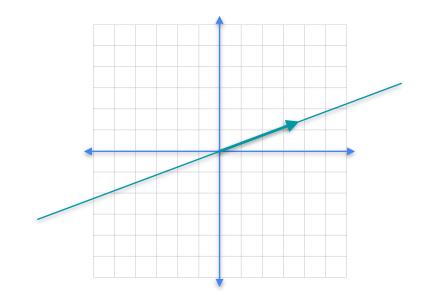
Not a basis

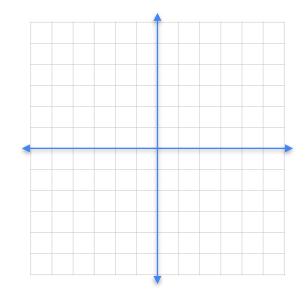


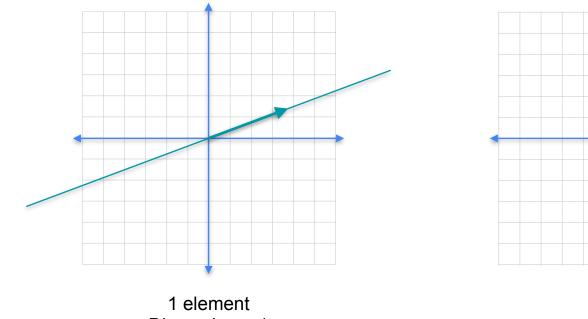




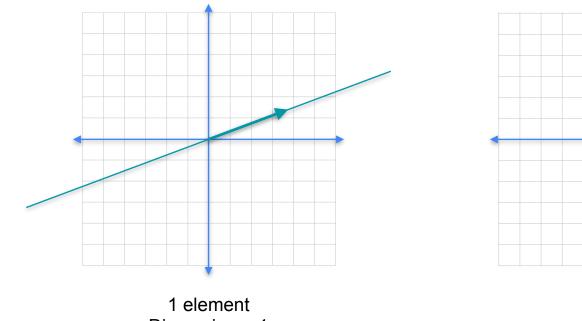




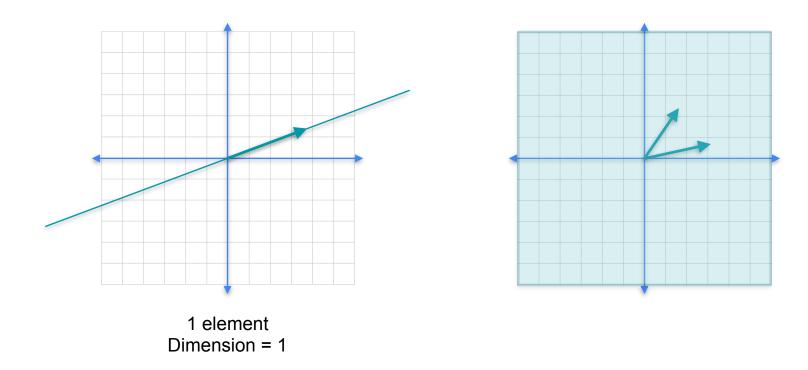


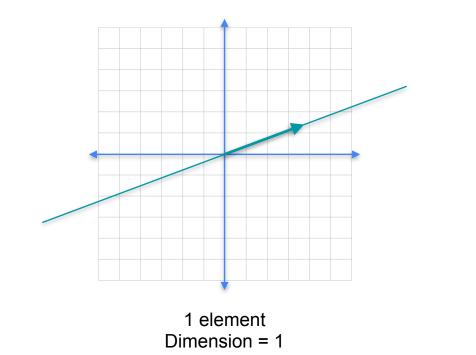


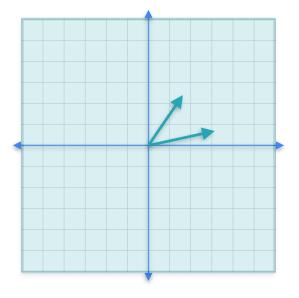
Dimension = 1



Dimension = 1



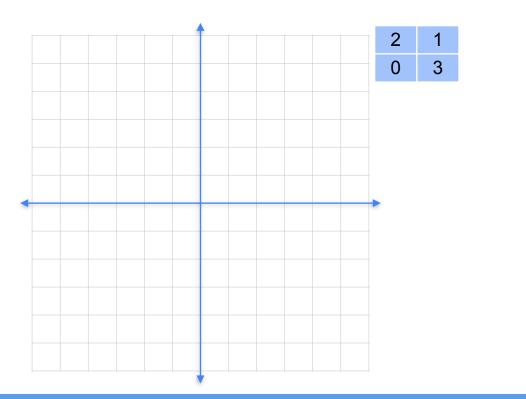


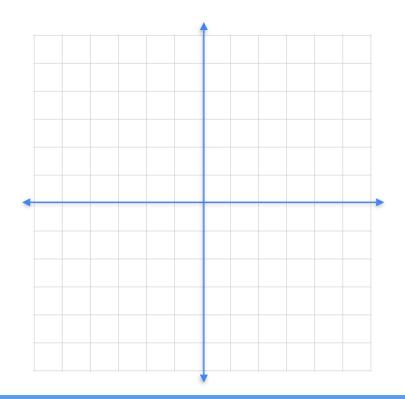


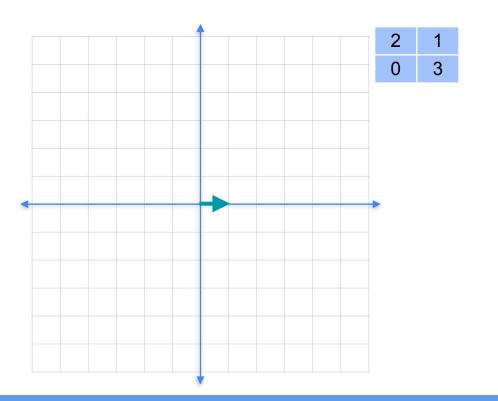
2 elements in the basis Dimension = 2

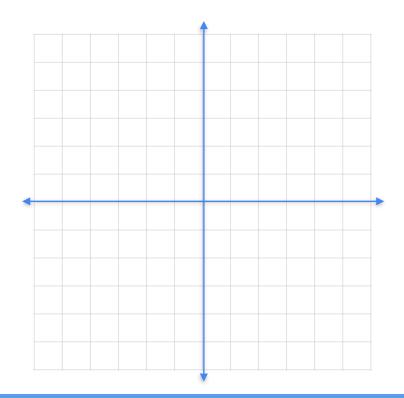
Determinants and Eigenvectors

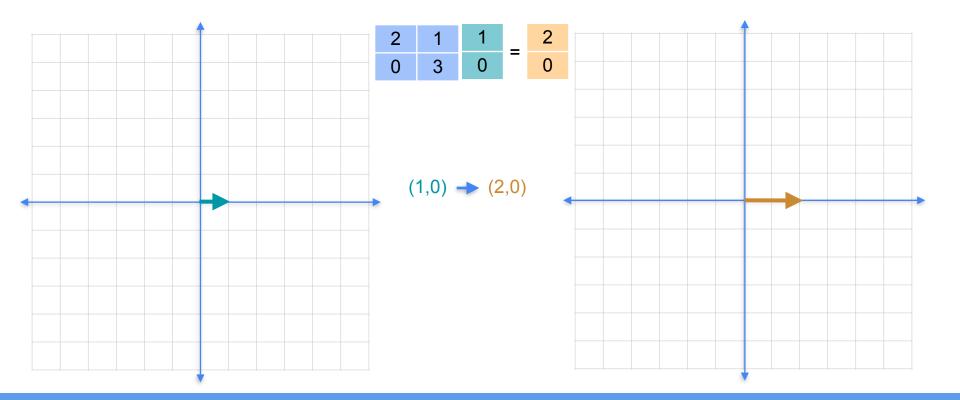
Eigenbasis

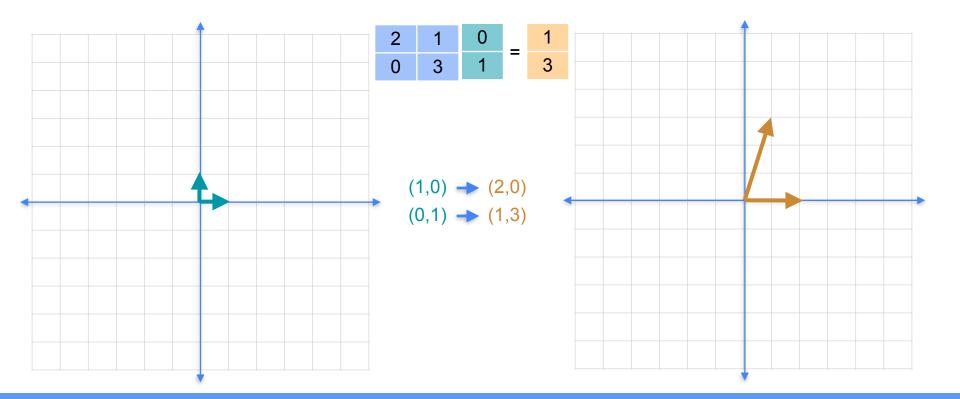


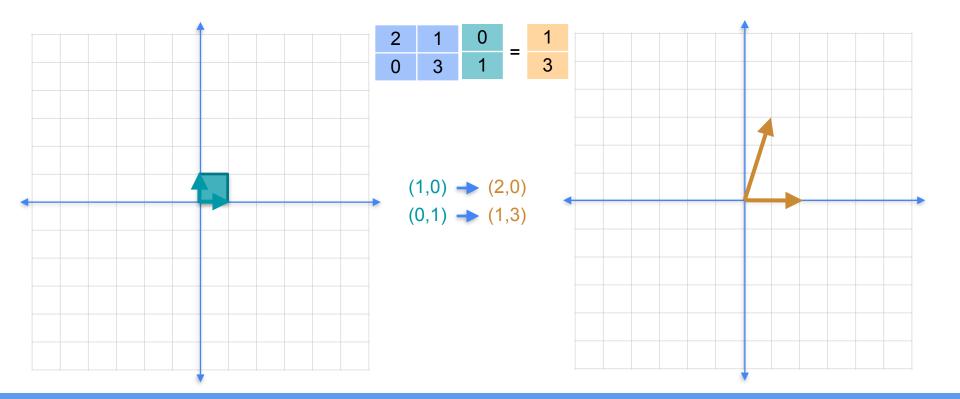


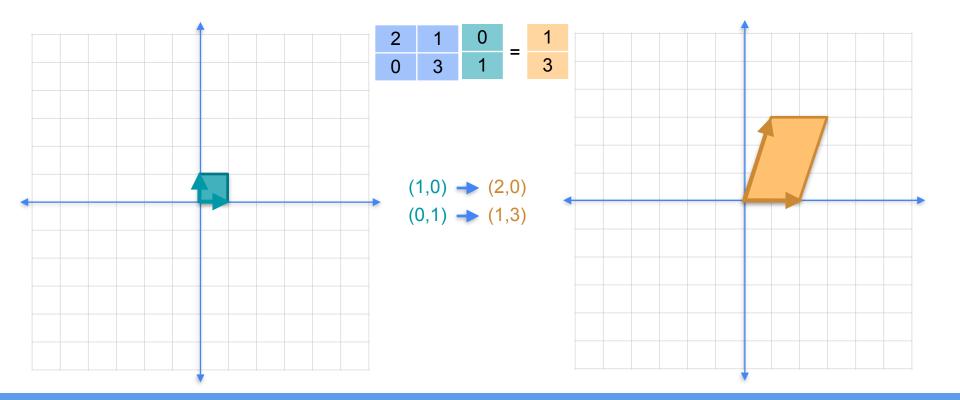


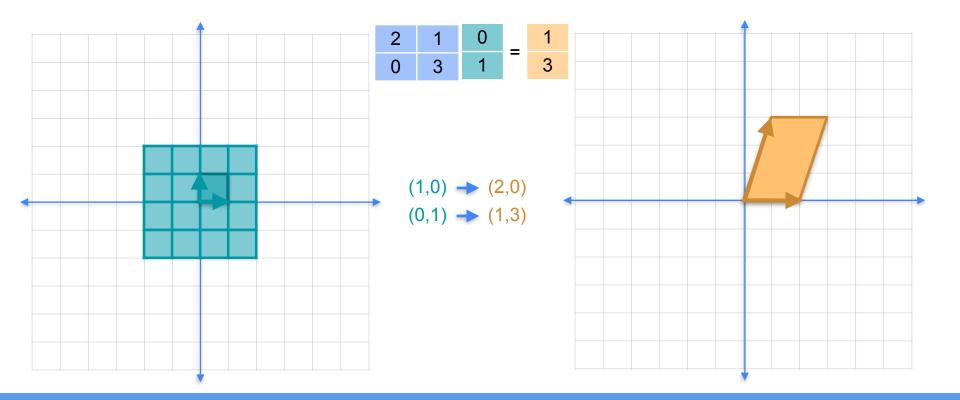


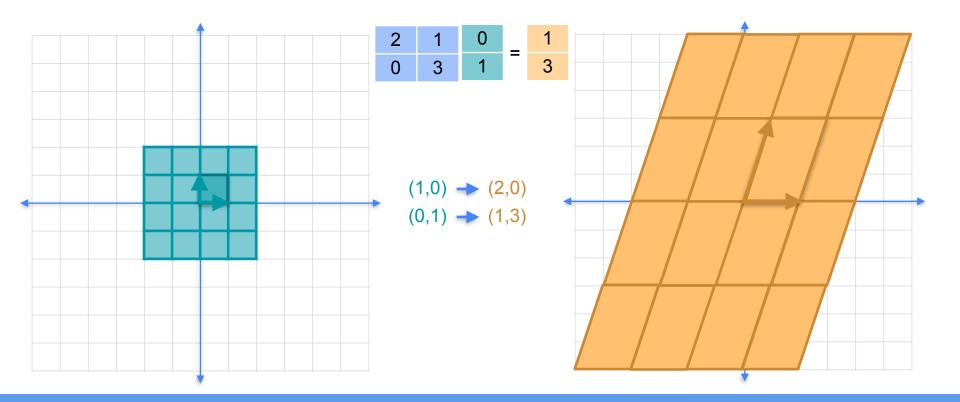


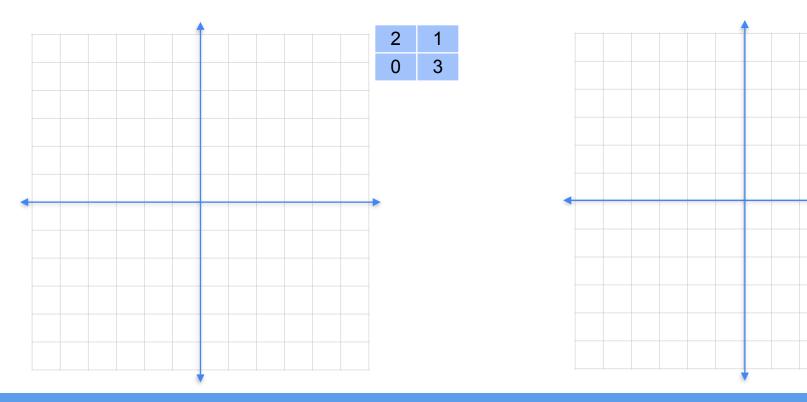


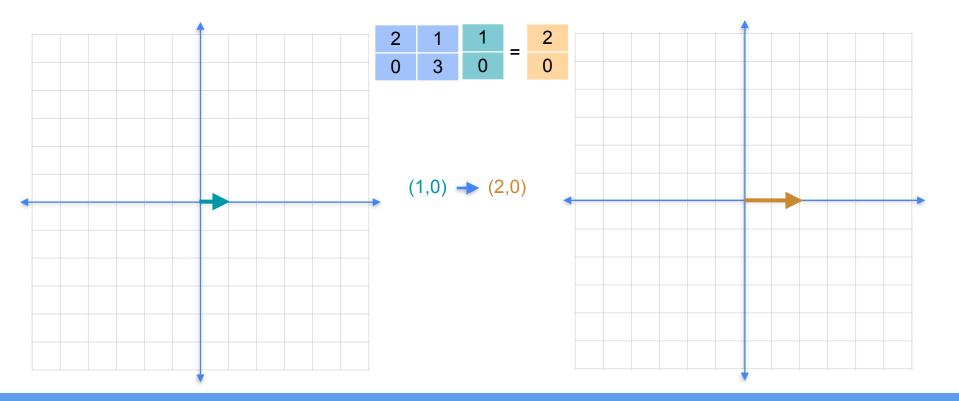


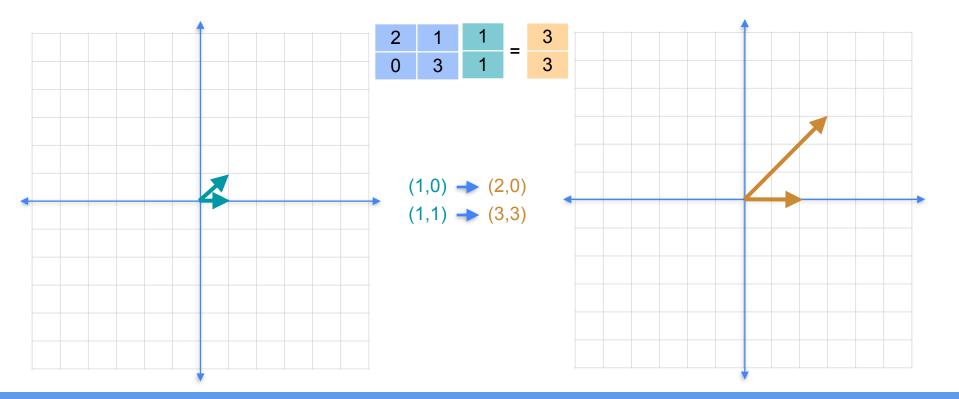


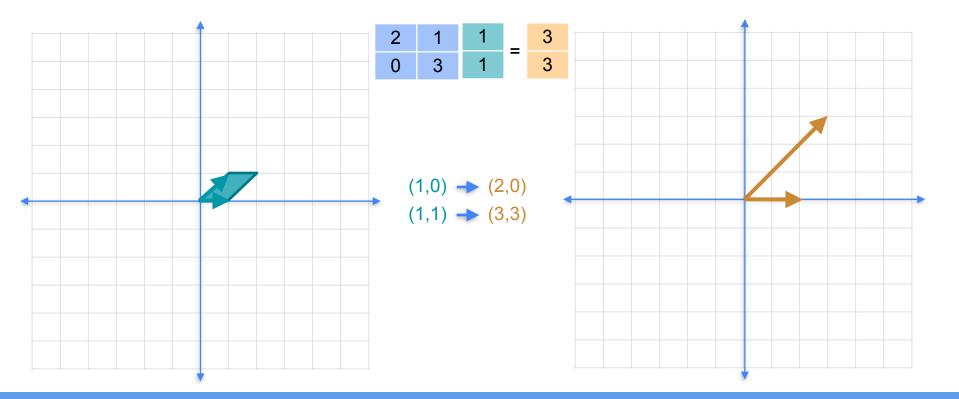


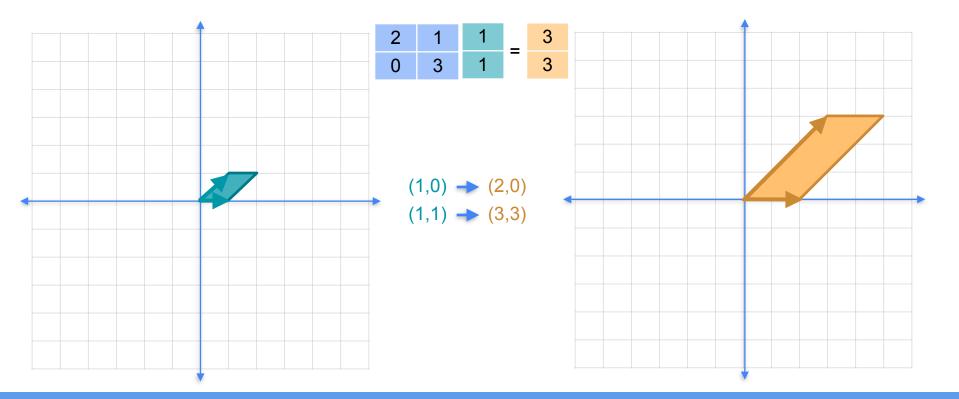


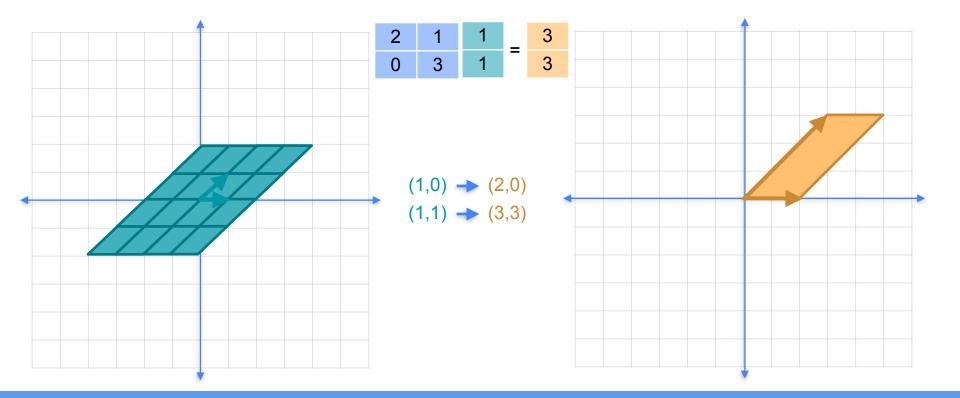


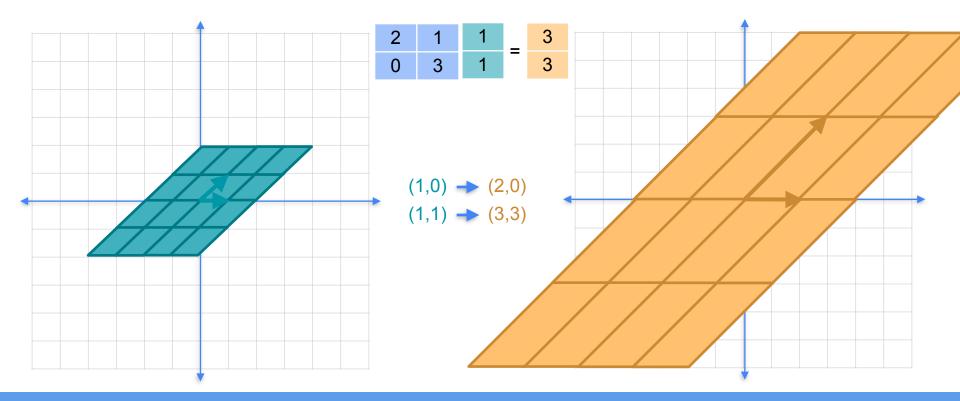


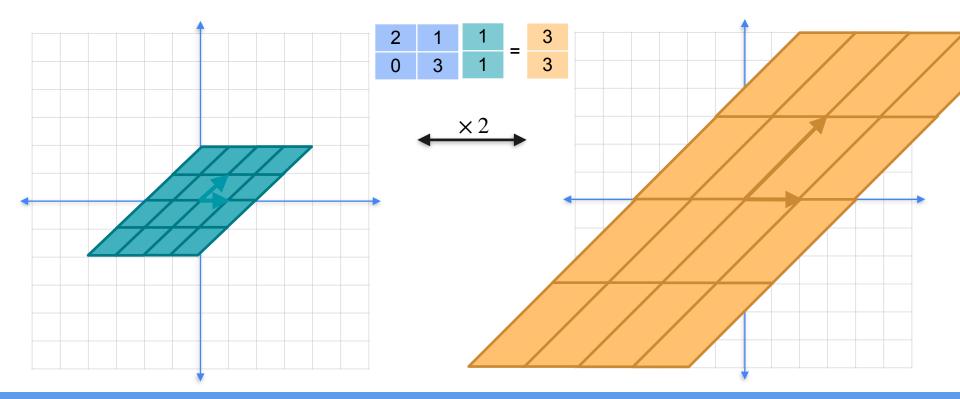


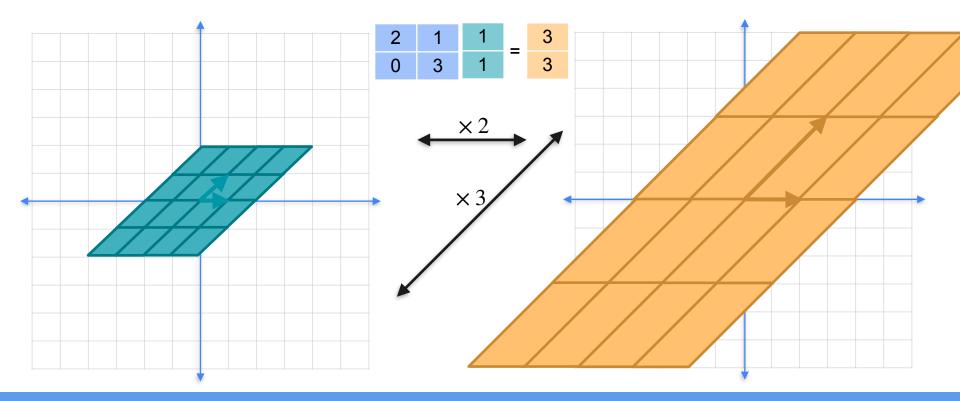


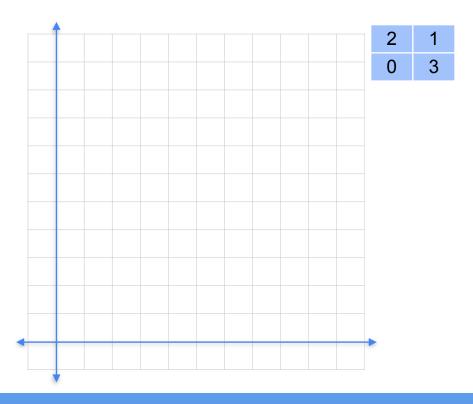


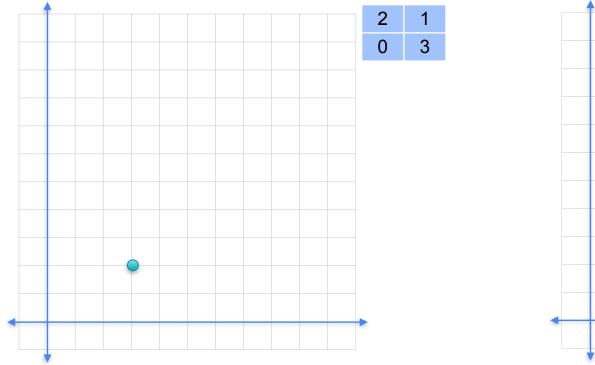


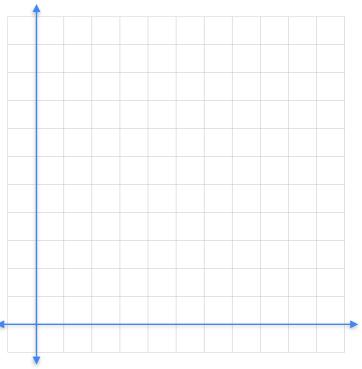


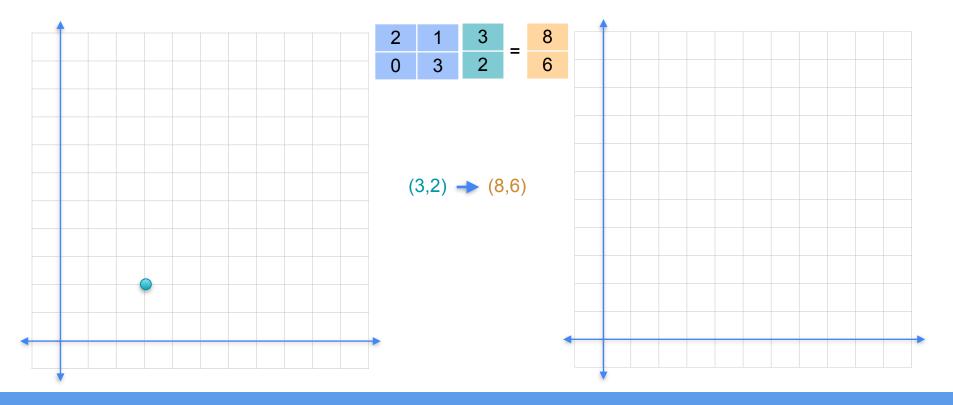


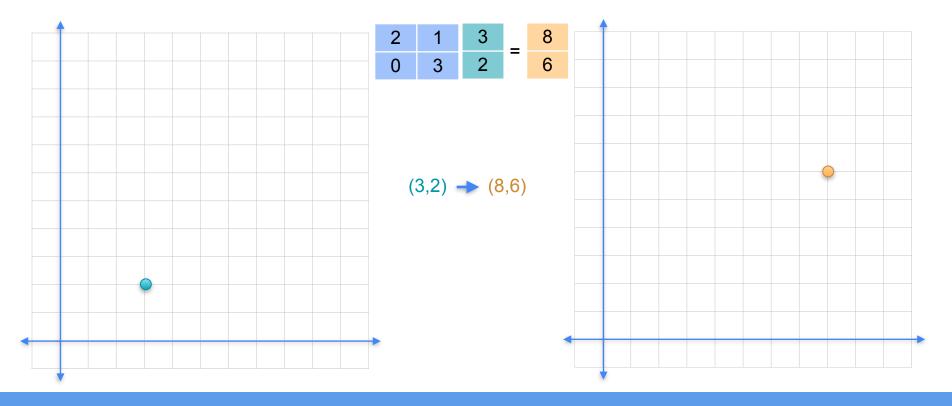


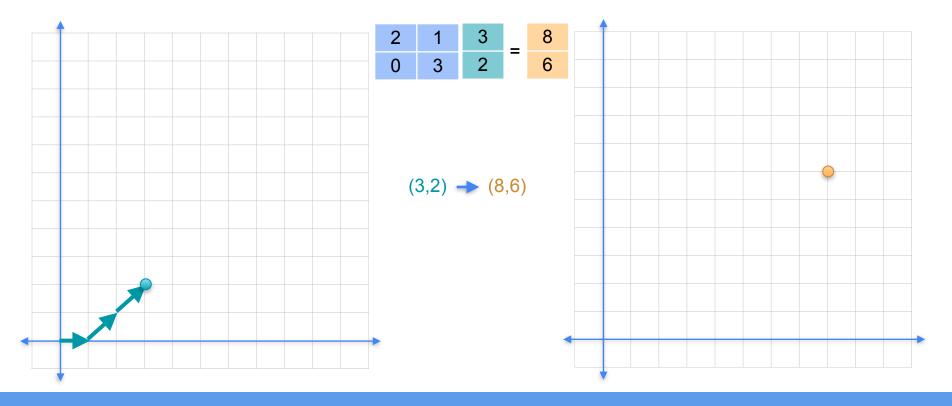


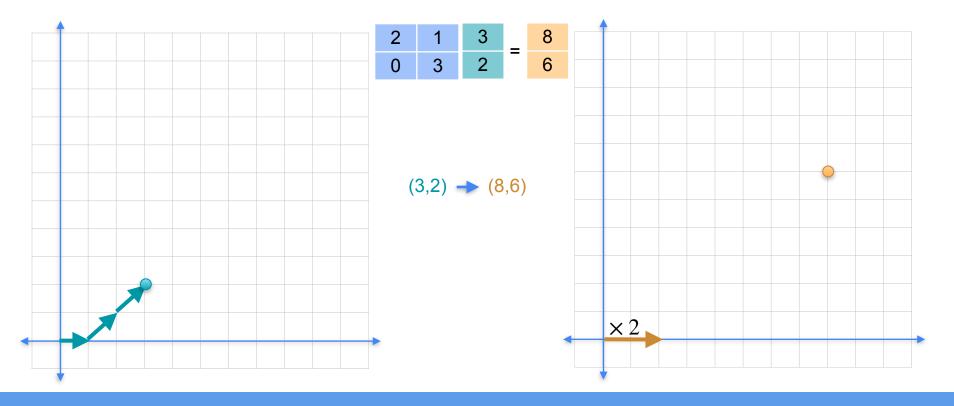


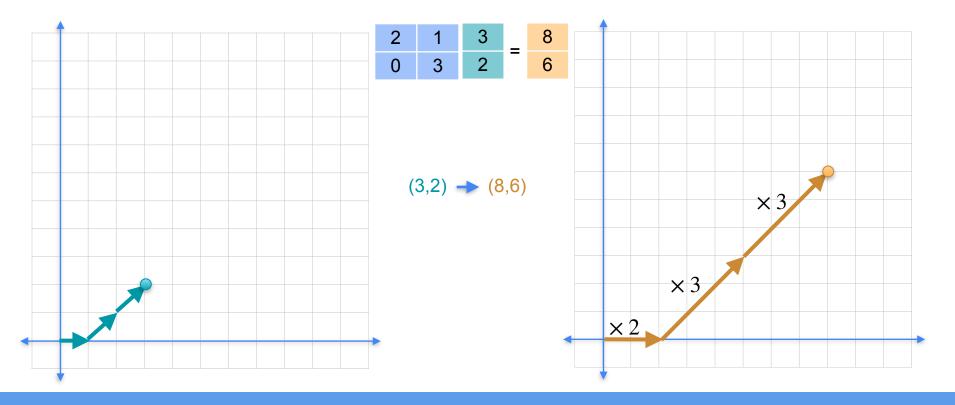






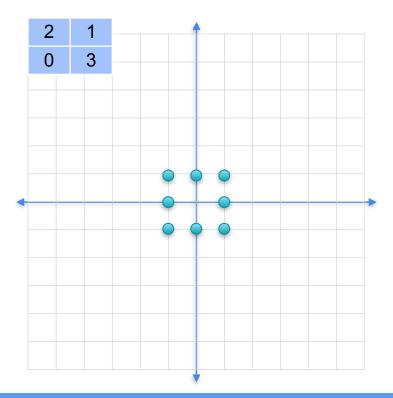


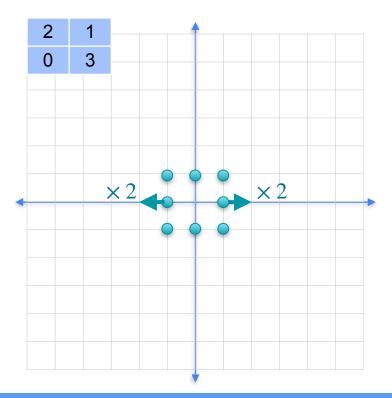


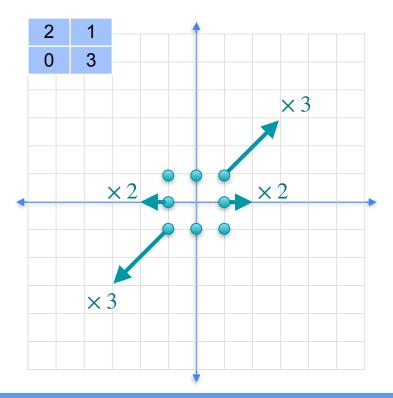


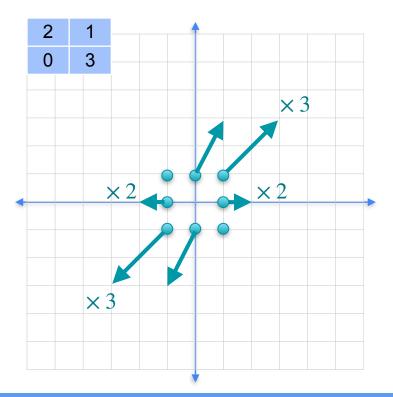
Determinants and Eigenvectors

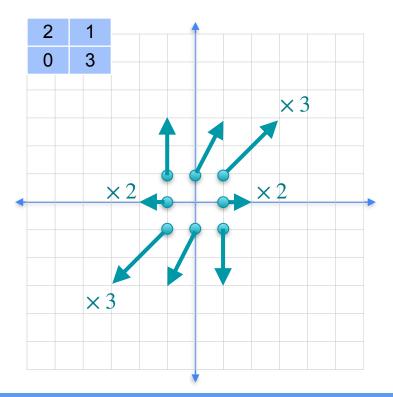
Eigenvalues and eigenvectors

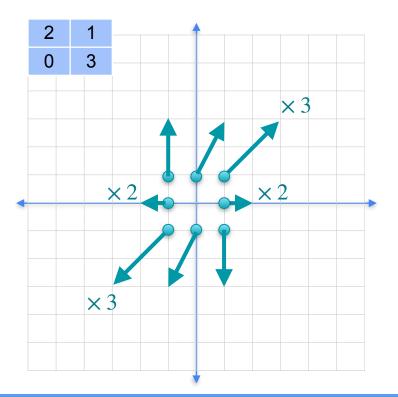


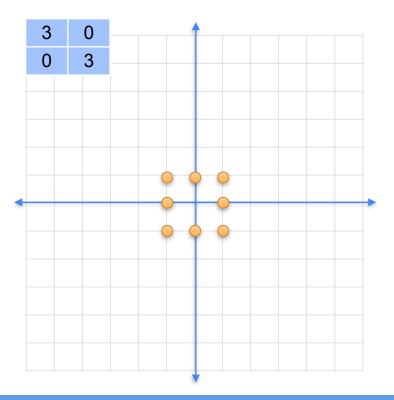


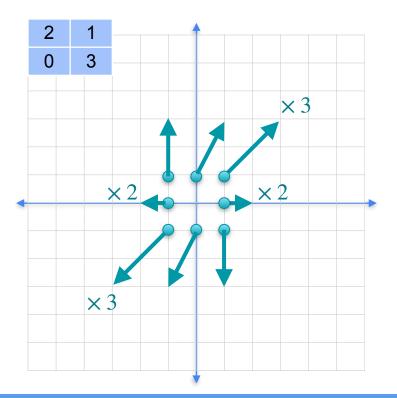


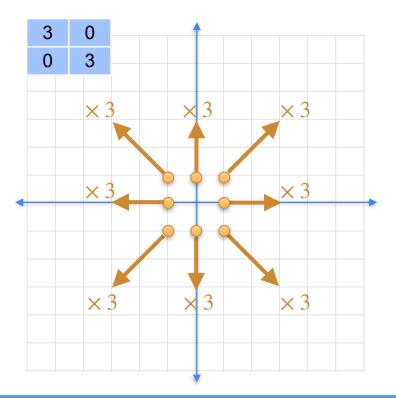


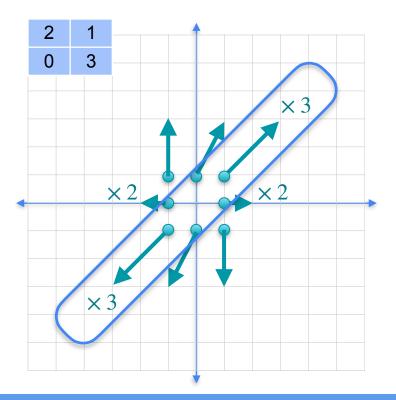


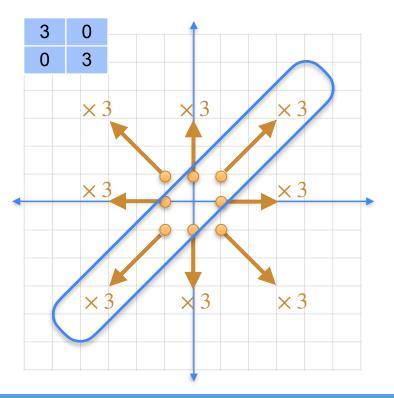


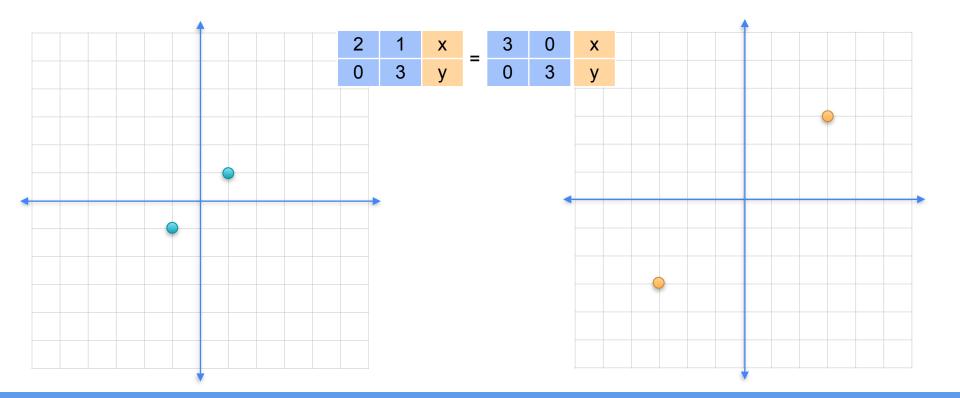


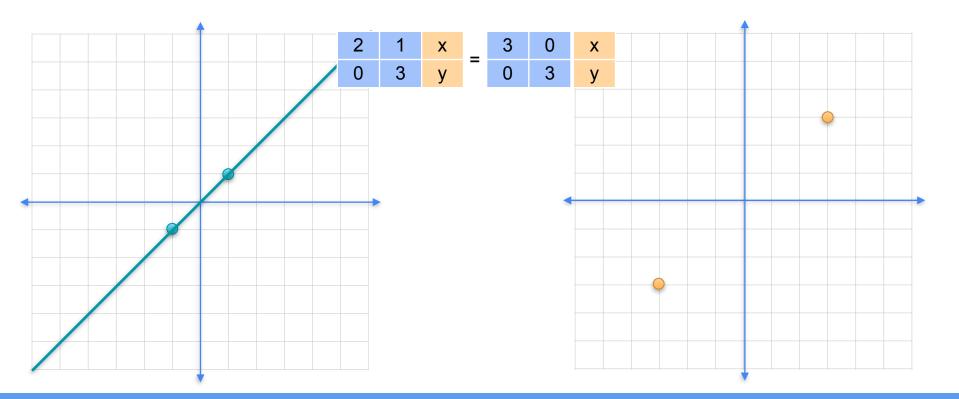


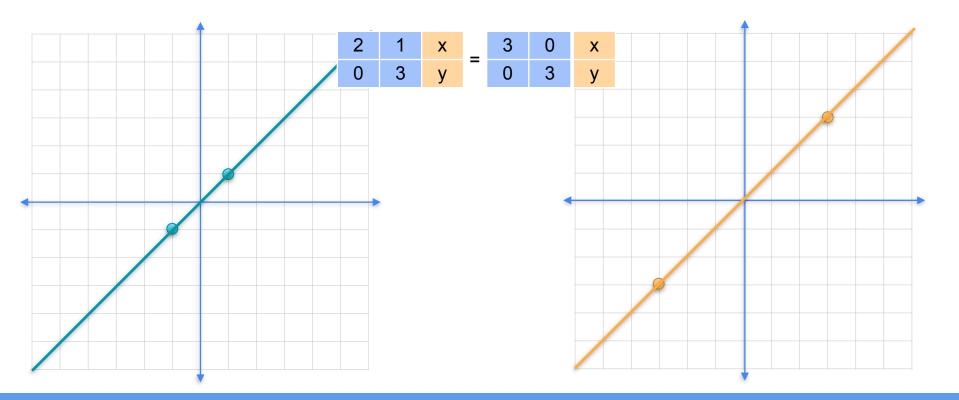


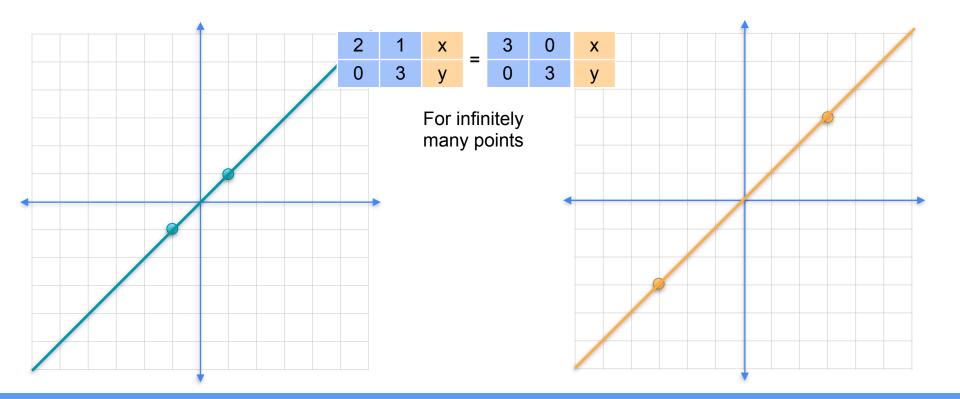


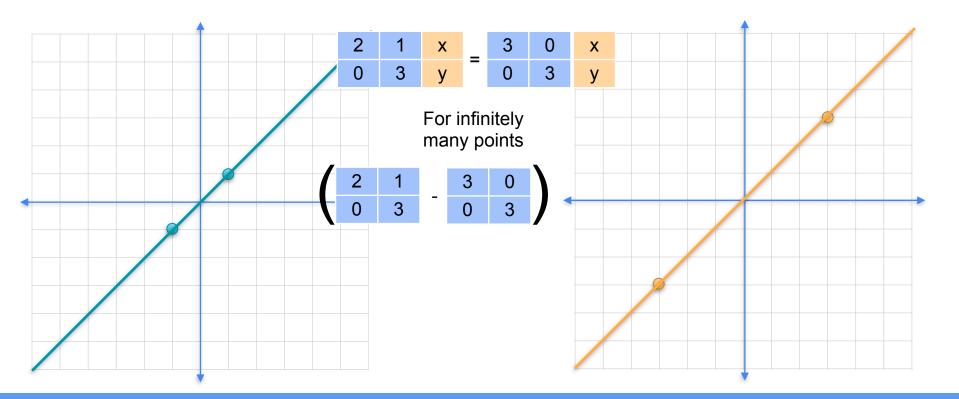


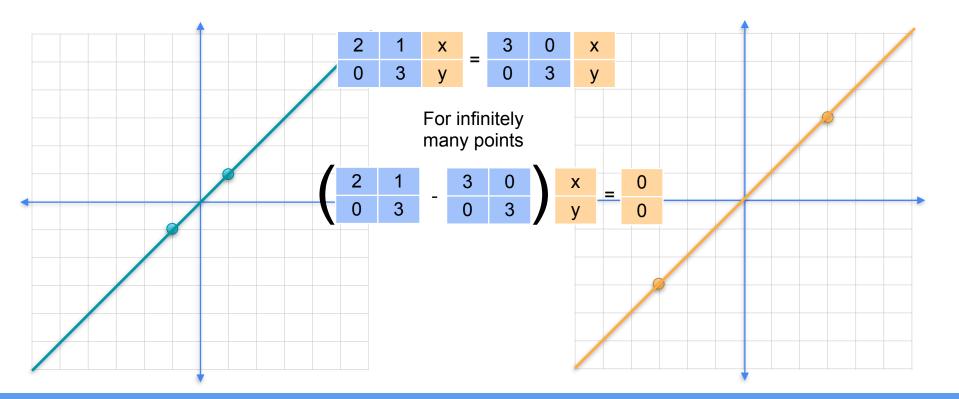


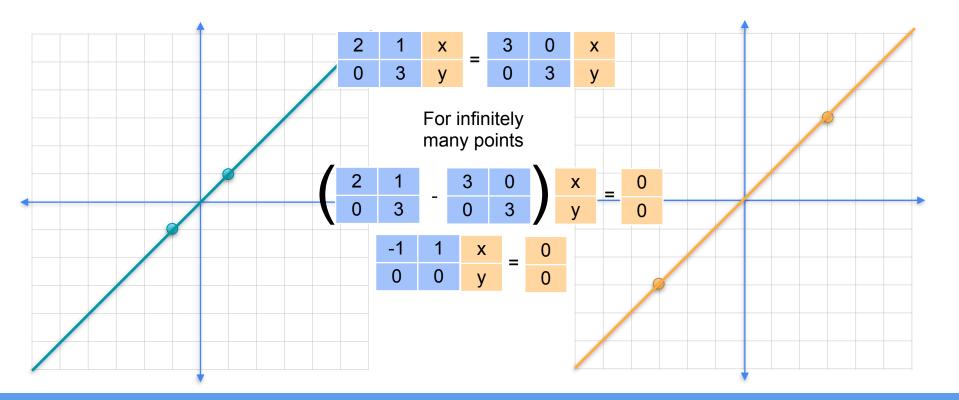


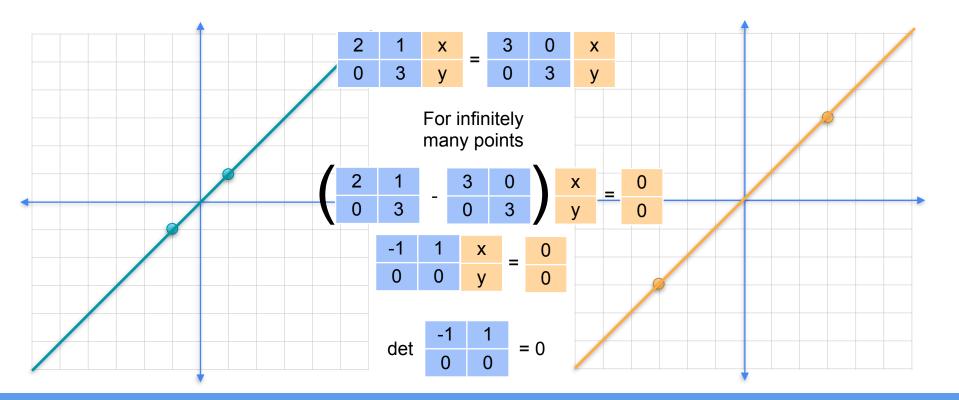


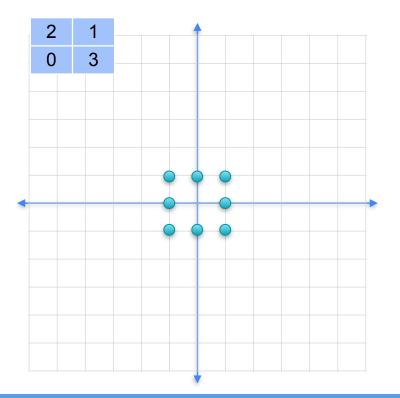


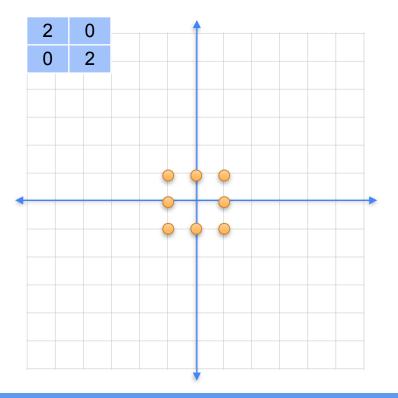




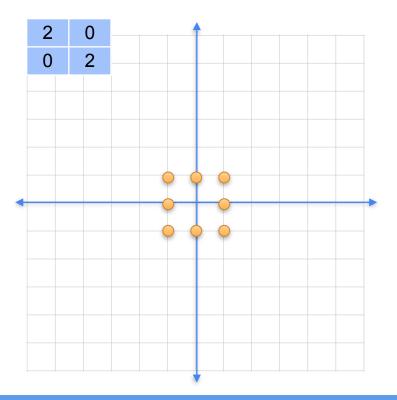


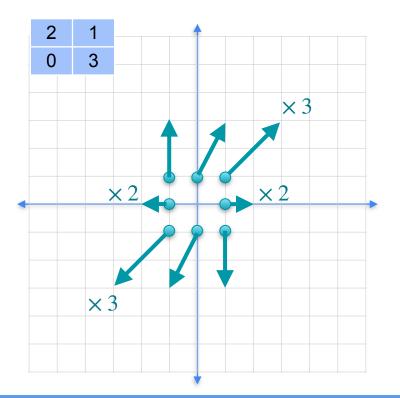


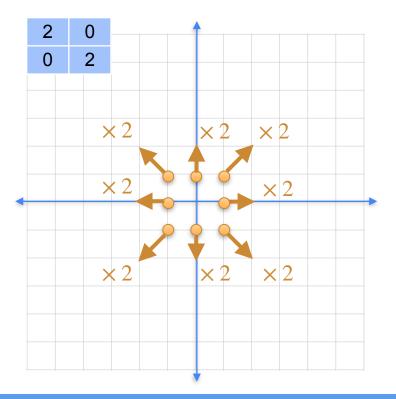


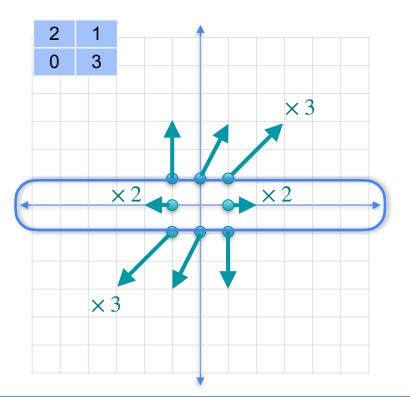


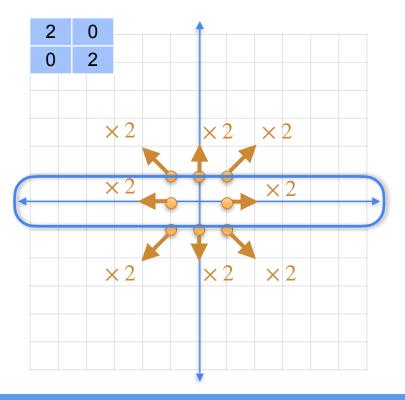


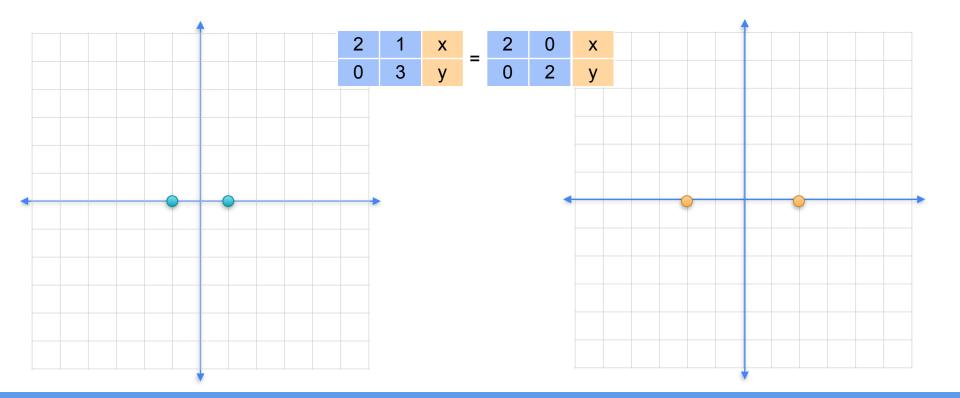


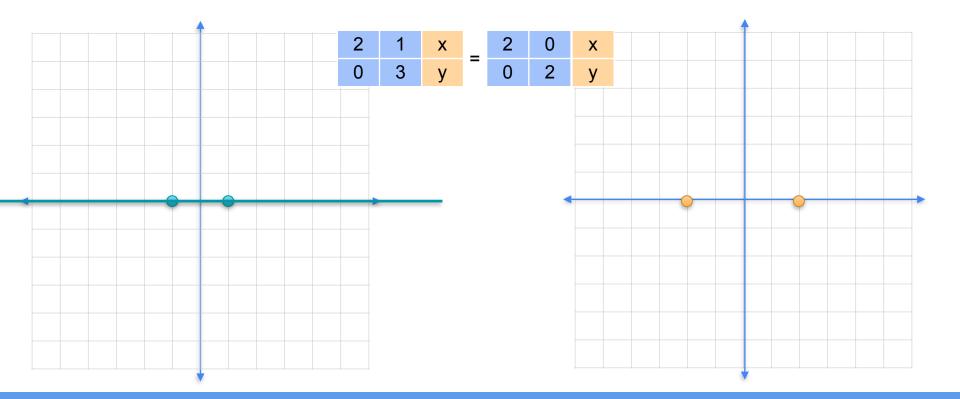


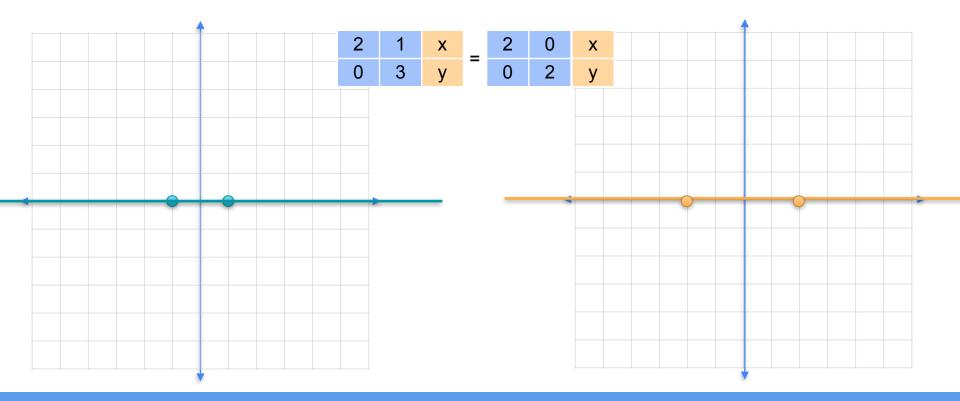


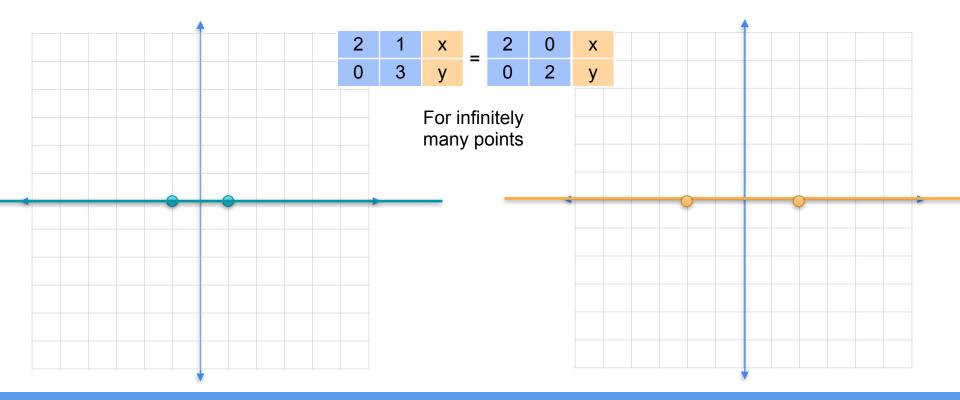


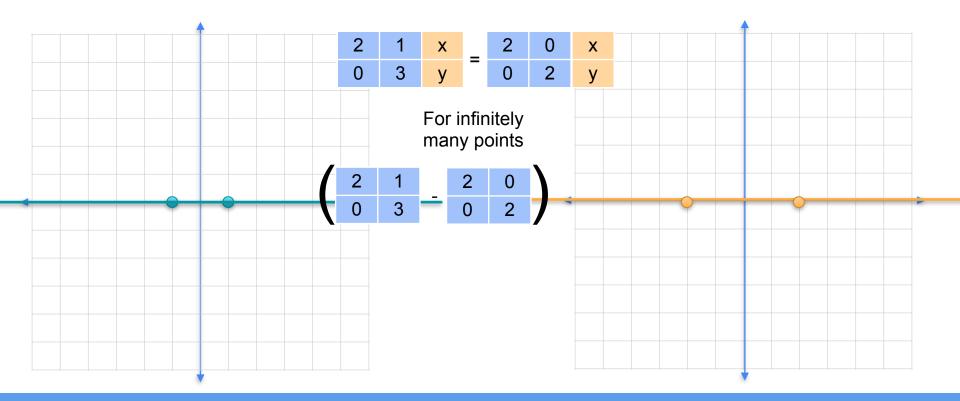


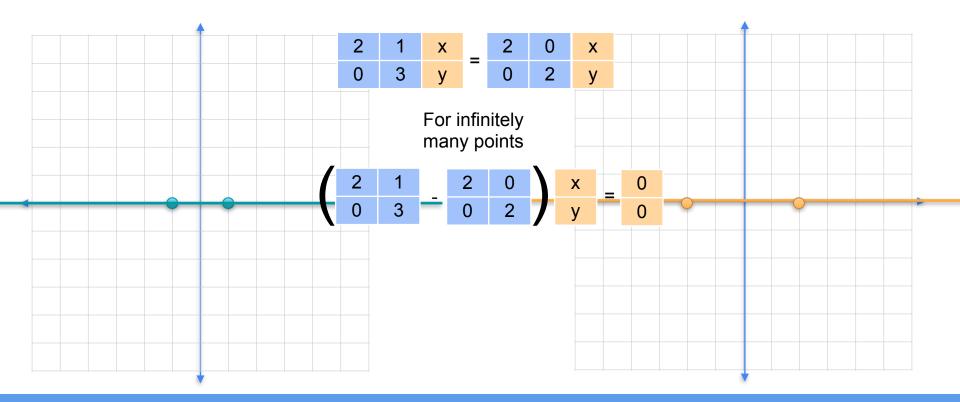


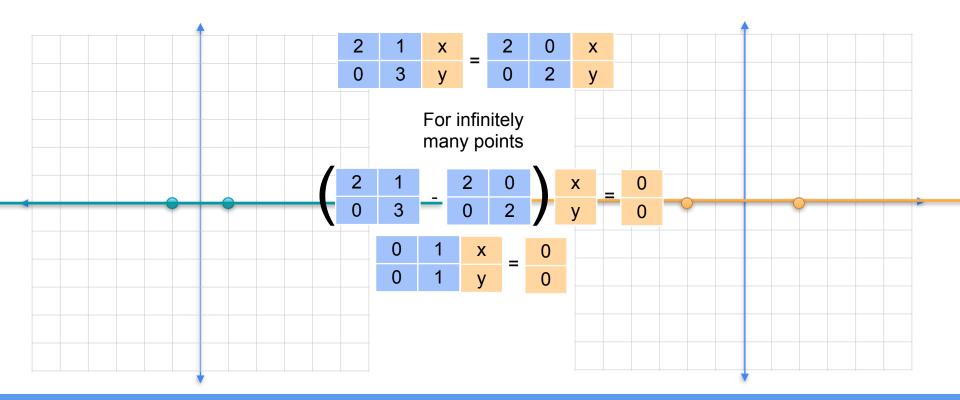


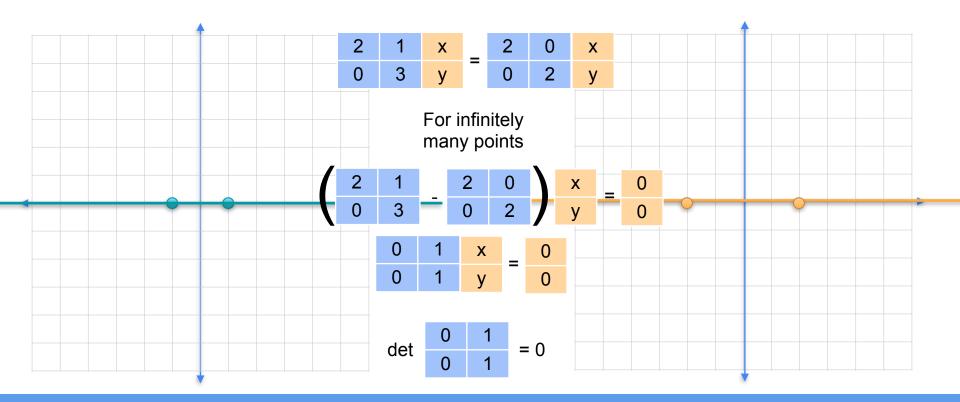












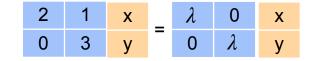
If λ is an eigenvalue:

If λ is an eigenvalue:

If λ is an eigenvalue:

2	1	х	_	λ	0	х
0	3	у	-	0	λ	у

If λ is an eigenvalue:



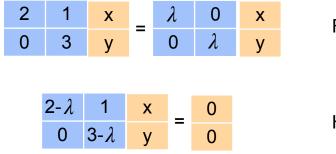
For infinitely many (x,y)

If λ is an eigenvalue:

1	х	_	λ	0	х
3	у	-	0	λ	у
2-λ	1	Х		0	
0	3-λ	у	=	0	
	2-λ	3 y 2-λ 1	$3 y =$ $2 - \lambda 1 x$	$3 y = 0$ $2-\lambda 1 x =$	$3 y = 0 \lambda$ $2-\lambda 1 x = 0$

For infinitely many (x,y)

If λ is an eigenvalue:



For infinitely many (x,y)

Has infinitely many solutions

If λ is an eigenvalue:

2	1	х	_	λ	0	х	
0	3	у	=	0	λ	у	
	2-λ	1	Х		0		
		3-λ		=	0		
			,				
		2-2	1				
det		2-λ 0	3-	ן א	= 0		

For infinitely many (x,y)

Has infinitely many solutions

If λ is an eigenvalue:

2	1	х		λ	0	Х	For infini
0	3	x y	-	0	λ	у	
	2-λ	1	Х		0		
	0	1 3-λ	у	-	0		Has infin
	det	2-λ 0	1	_	: 0		
	uot	0	3-,	λ	U		
($(2-\lambda)$)(3 - 2)	λ) —	$1 \cdot 0$	= 0		

For infinitely many (x,y)

Has infinitely many solutions

If λ is an eigenvalue:

2	1	х		λ	0	Х
0	3	у	-	0	λ	у
	2-λ	1	Х		0	
	0	1 3-λ	V	-	0	
		- //	J		U	
	dat	2-λ	1		- 0	
	uei	2-λ 0	3-,	λ	- 0	

For infinitely many (x,y)

Has infinitely many solutions

Characteristic polynomial

 $(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$

If λ is an eigenvalue:

2	1	х		λ	0	Х		For in
0	3	x y	-	0	λ	у		
	2-λ	1	Х		0			
	0	1 3-λ	у	=	0			Has ir
		2-λ 0						
($(2-\lambda)$	(3 - 2)	λ) –	- 1 · 0	0 = 0		$\lambda = 2$ $\lambda = 3$	

nfinitely many (x,y)

nfinitely many solutions

Characteristic polynomial

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations

2x + y = 2x0x + 3y = 2y

Eigenvalues: $\lambda = 2$ $\lambda = 3$

x = 1

y = 0

Solve the equations

2
 1
 x

$$x$$
 $2x + y = 2x$

 0
 3
 y
 y
 y

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations

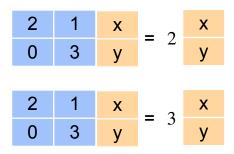
2
 1
 x

$$x$$
 $2x + y = 2x$
 $x = 1$
 1

 0
 3
 y
 y
 $0x + 3y = 2y$
 $y = 0$
 0

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations



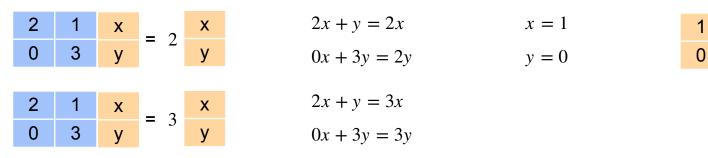
$$2x + y = 2x x = 1$$
$$0x + 3y = 2y y = 0$$

1

0

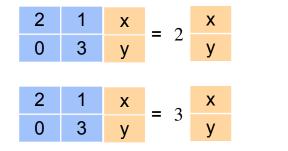
Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations



Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations



$$2x + y = 2x \qquad \qquad x = 1$$

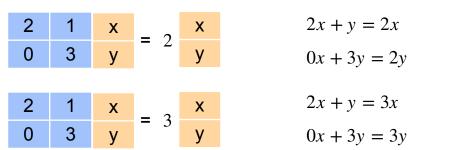
$$0x + 3y = 2y \qquad \qquad y = 0$$

$$2x + y = 3x \qquad \qquad x = 1$$

$$0x + 3y = 3y \qquad \qquad y = 1$$

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations



x = 1

$$y = 0$$

y = 1

x = 1

1

1

0

Quiz

• Find the eigenvalues and eigenvectors of this matrix:

9	4
4	3

Solution

- Eigenvalues: 11, 1
- Eigenvectors: (2,1), (-1,2)

9	4
4	3

• The characteristic polynomial is

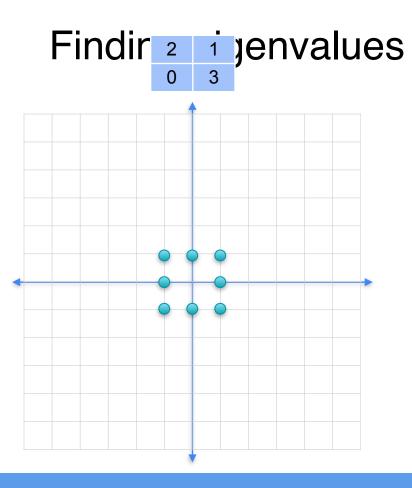
det
$$\frac{9-\lambda}{4} \frac{4}{3-\lambda} = (9-\lambda)(3-\lambda) - 4 \cdot 4 = 0$$

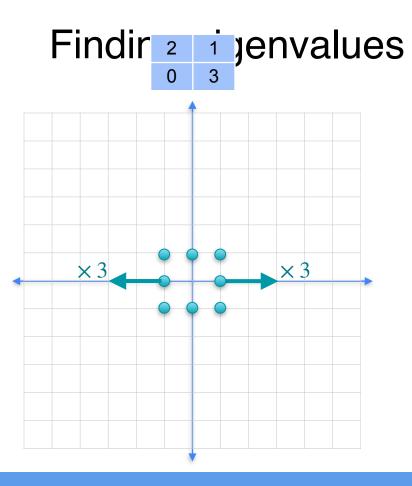
• Which factors as $\lambda^2 - 12\lambda + 11 = (\lambda - 11)(\lambda - 1)$

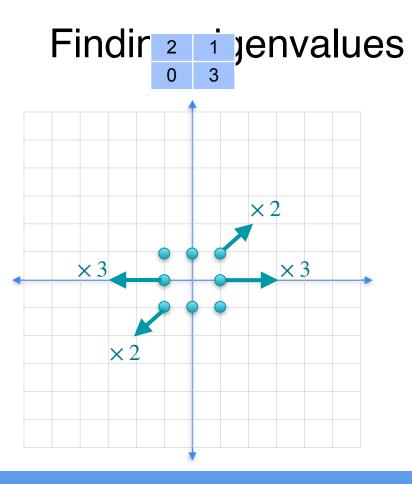
• The solutions are
$$\begin{array}{l} \lambda = 11 \\ \lambda = 1 \end{array}$$

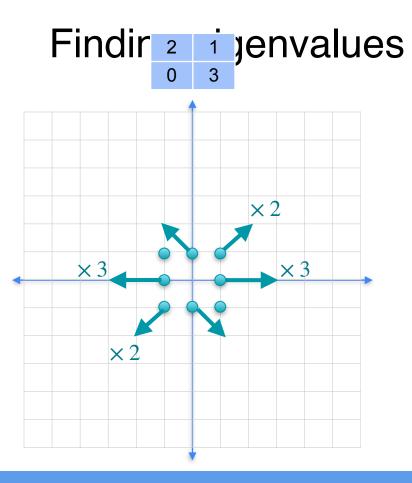
Determinants and Eigenvectors

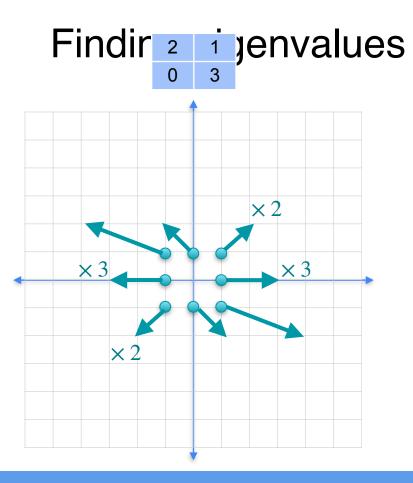
Conclusion

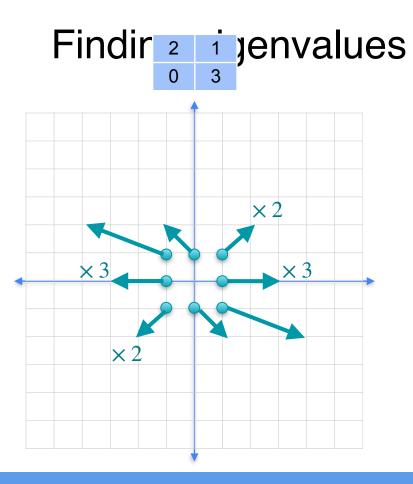


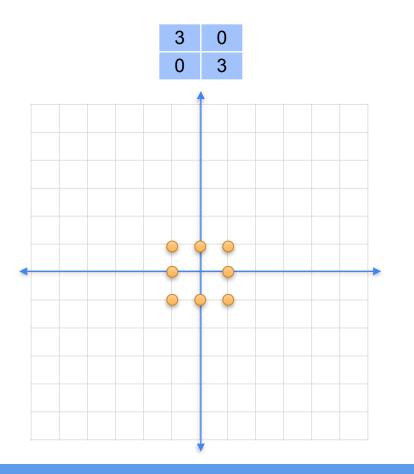


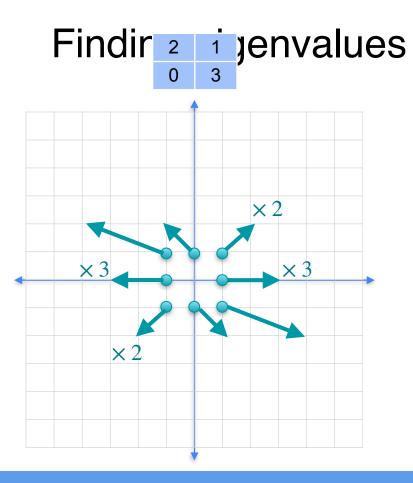


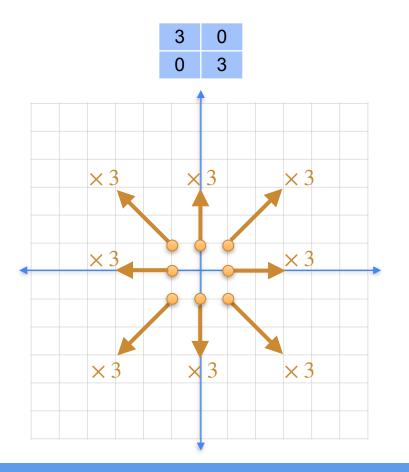


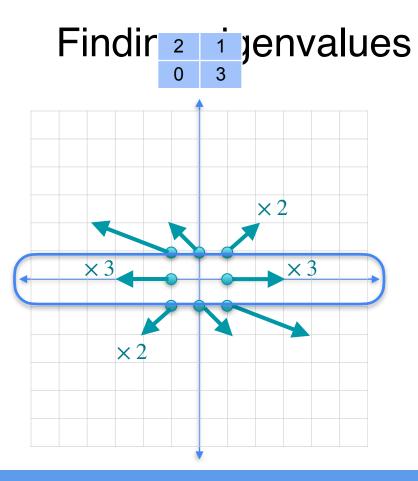


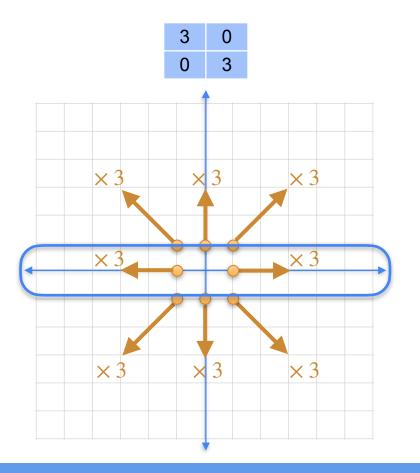


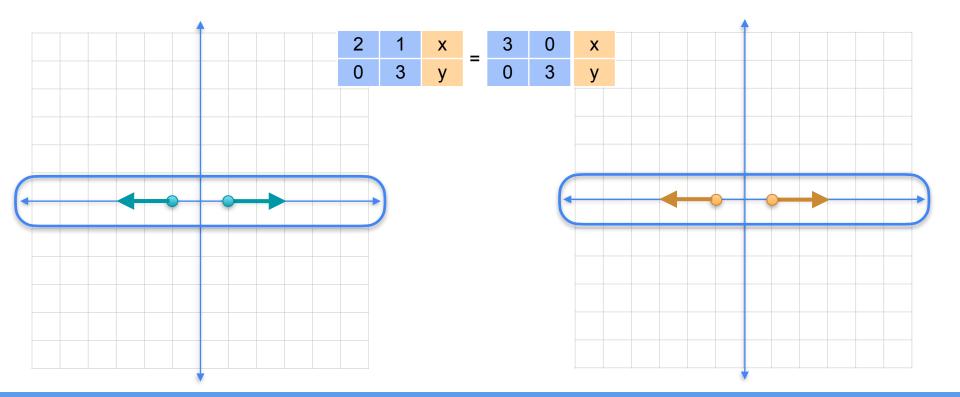


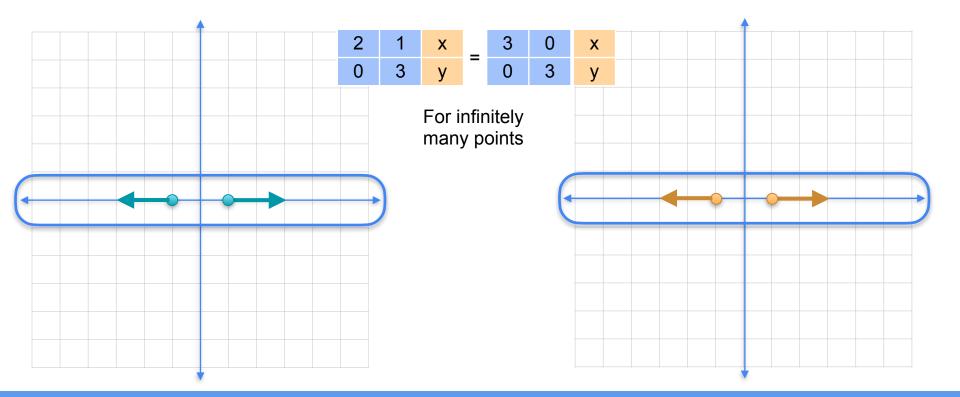


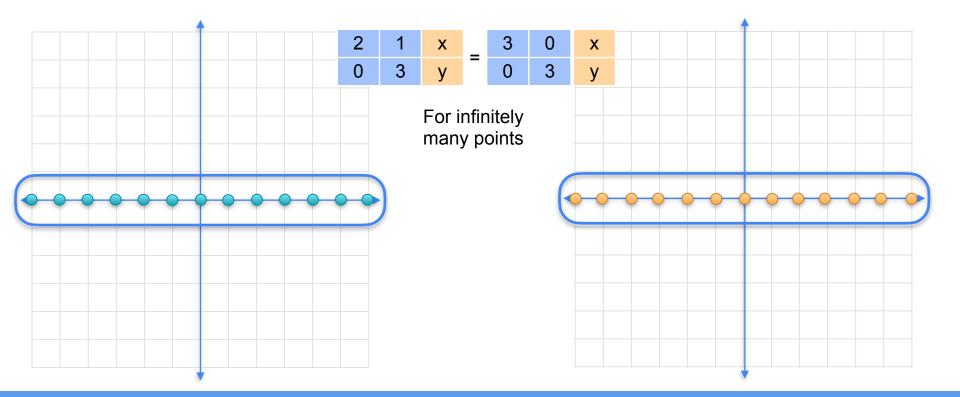


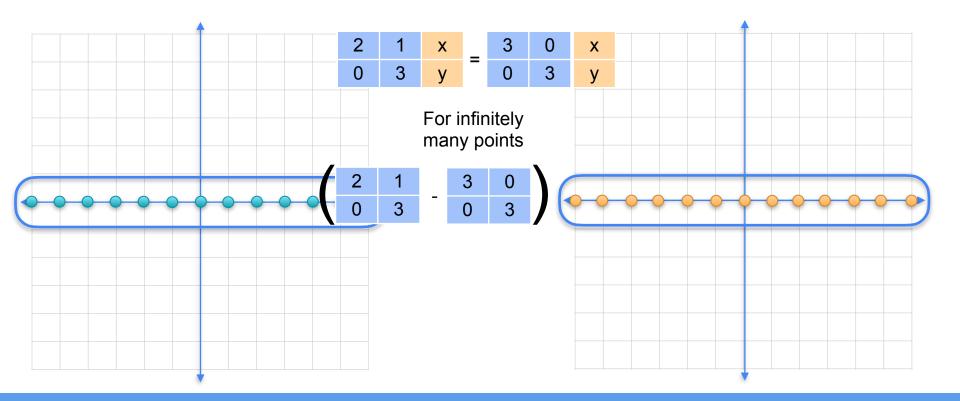




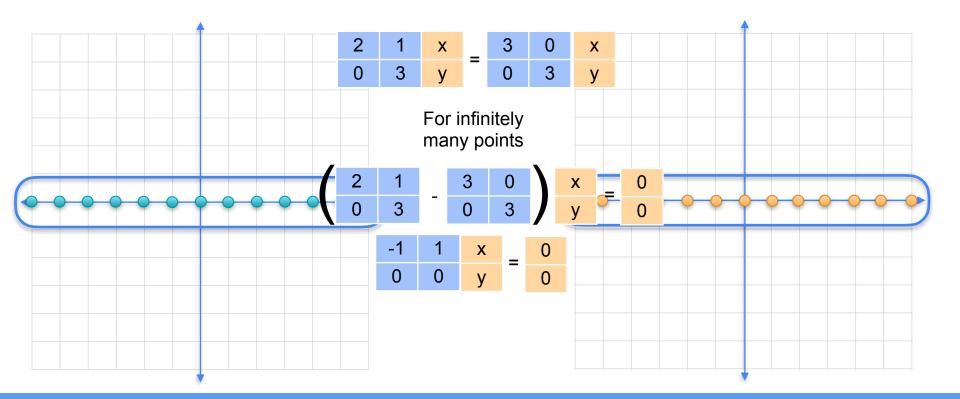


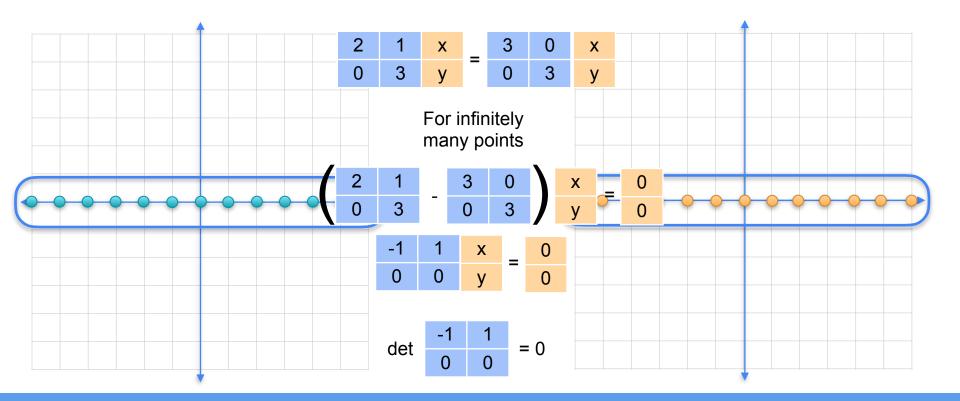


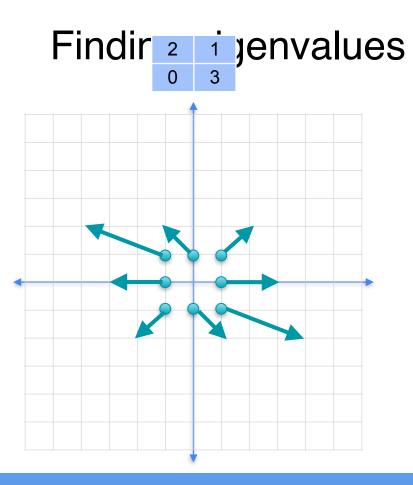


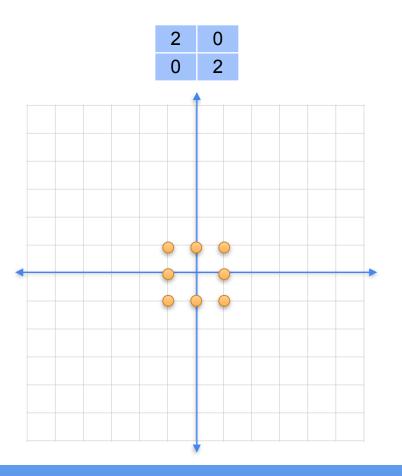


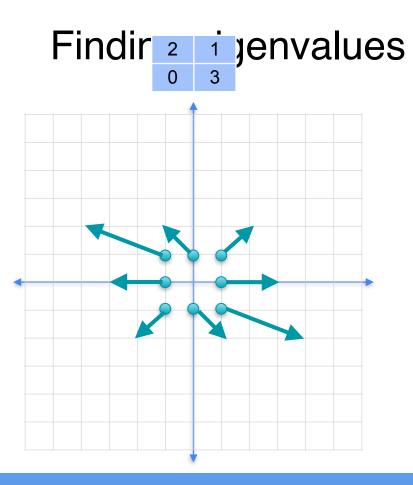


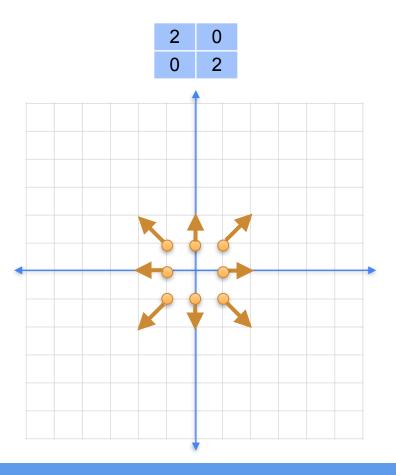


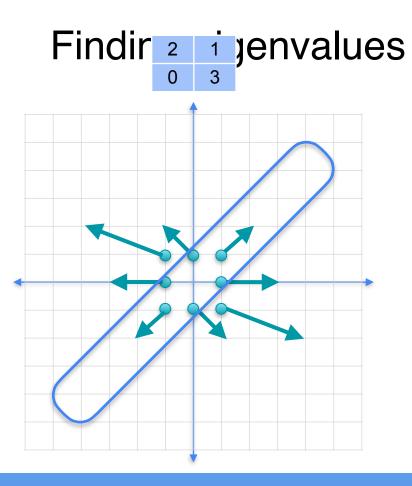


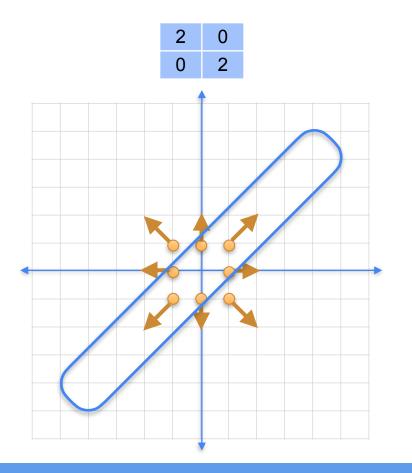


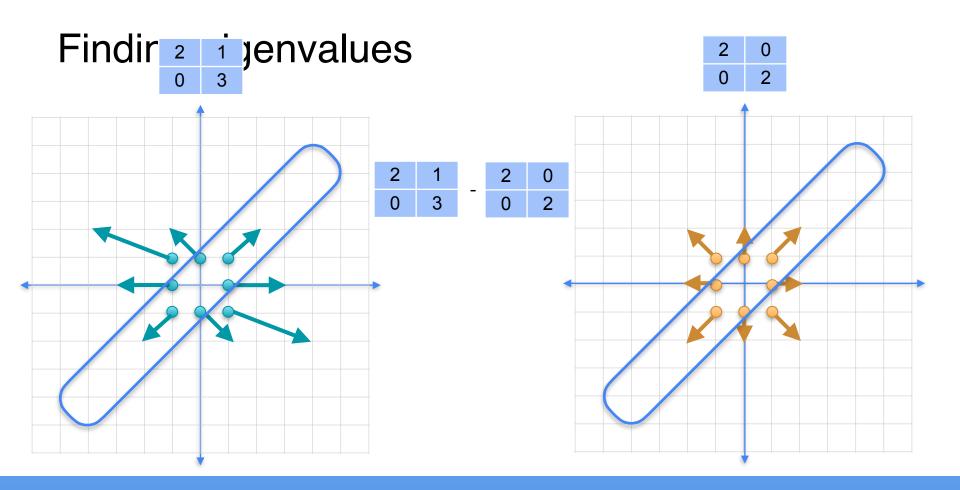


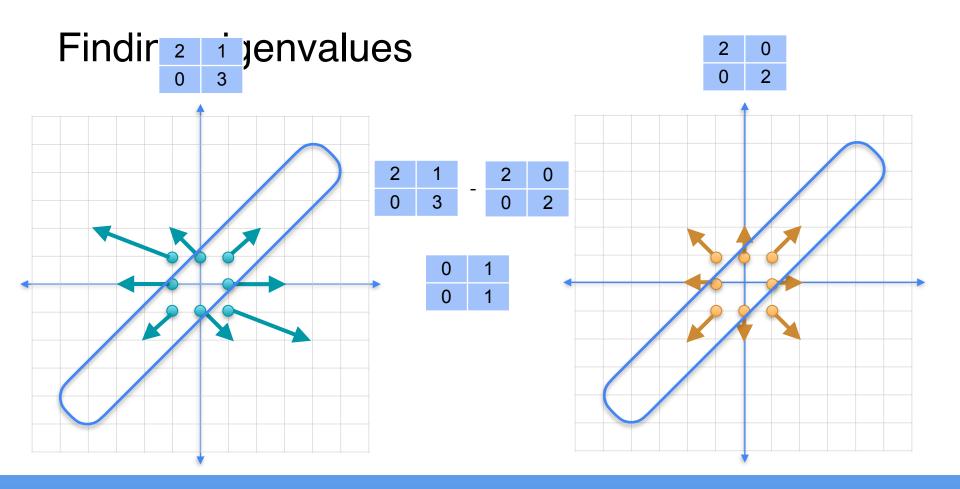


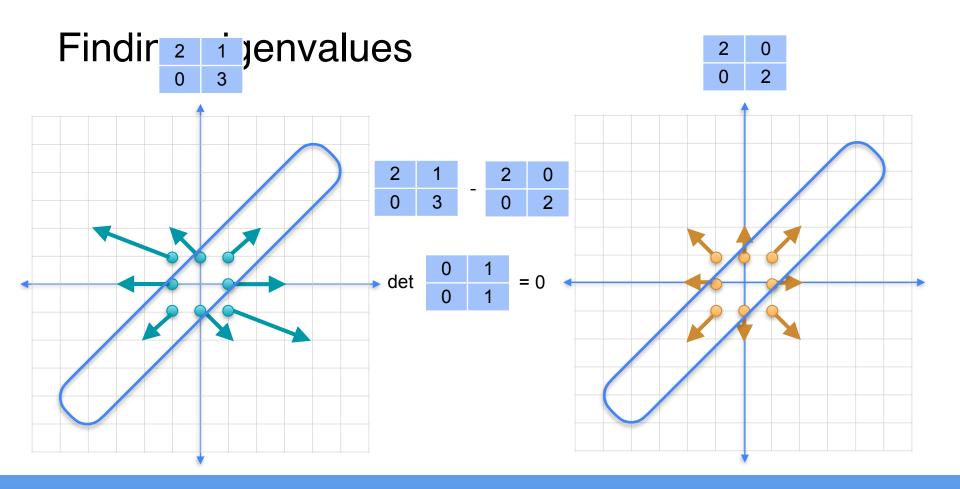


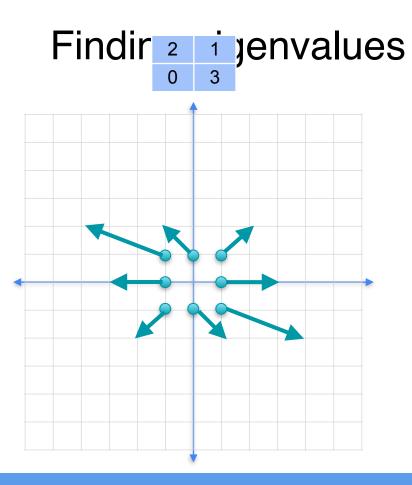


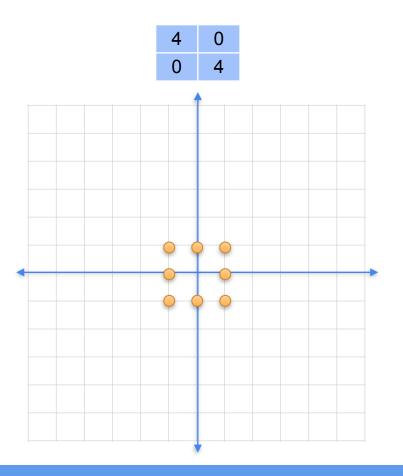


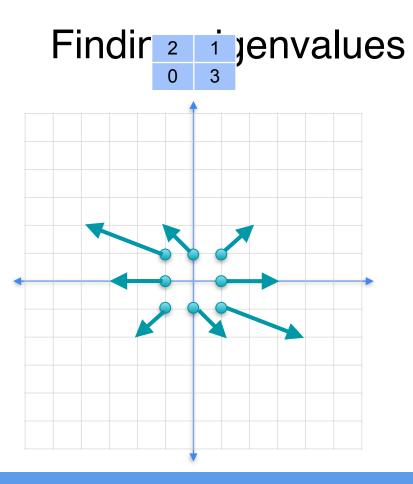


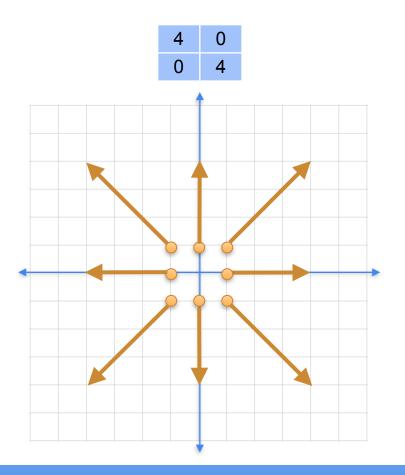


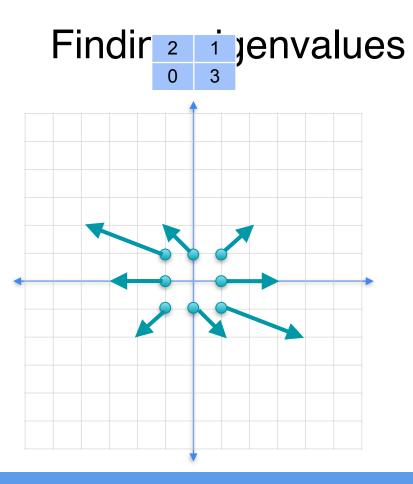


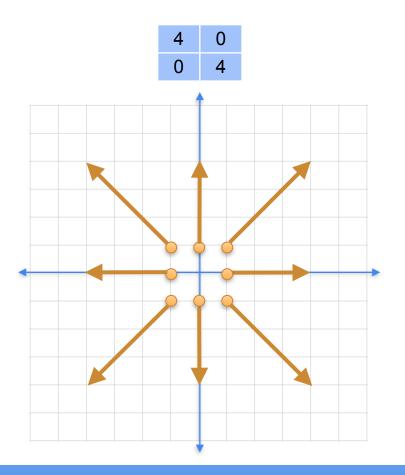


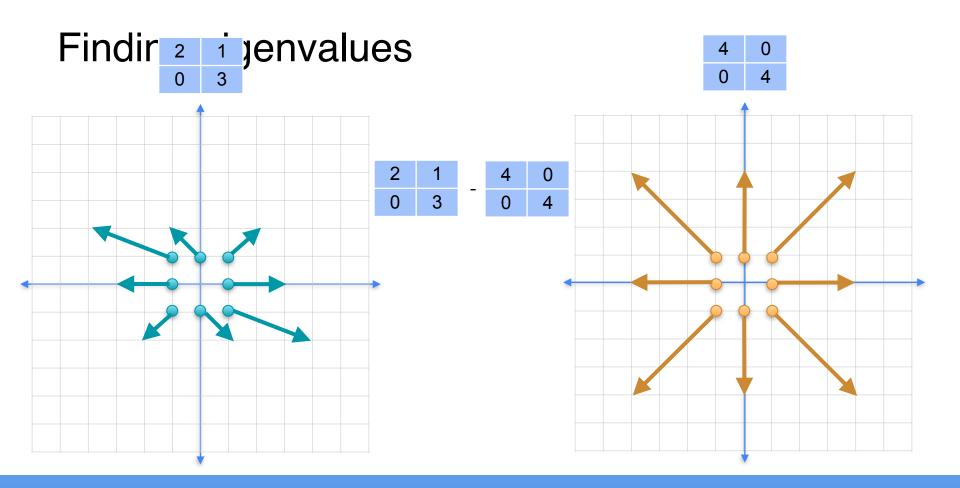


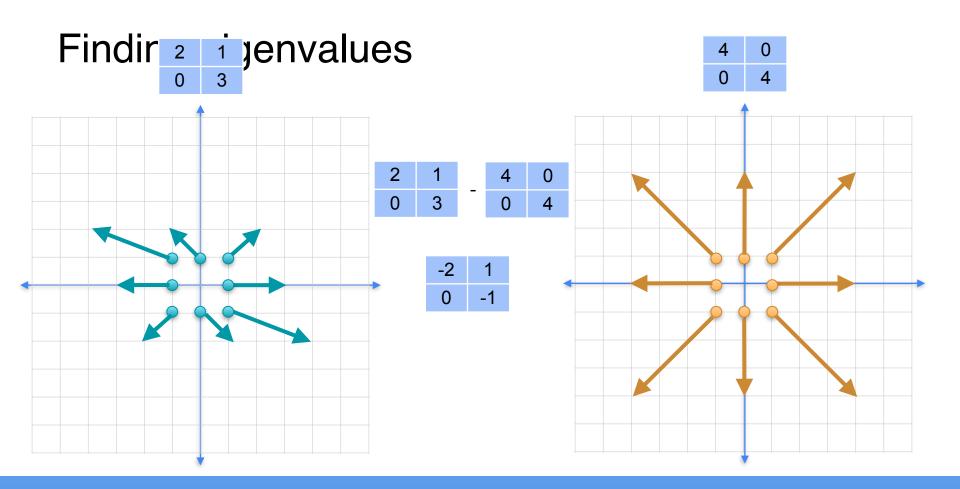


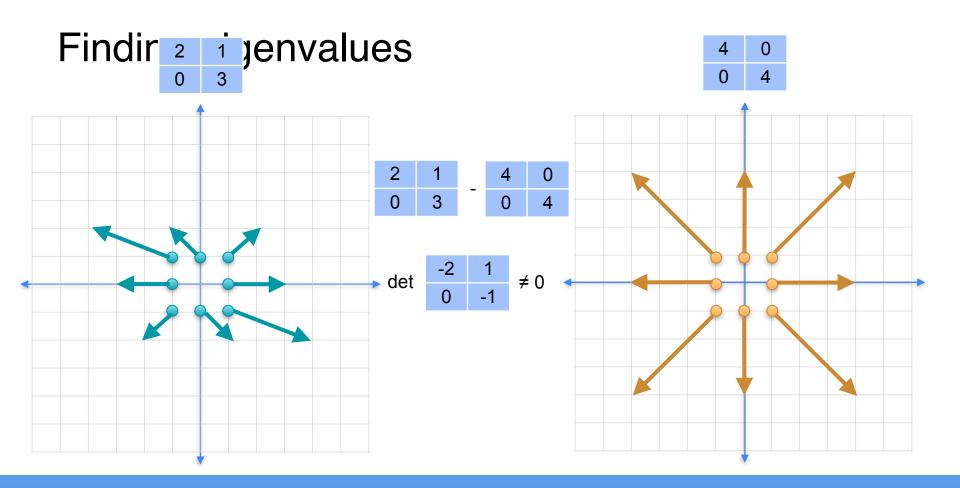


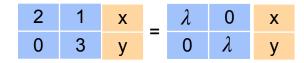












2	1	Х		λ	0 λ	Х
0	3	у	-	0	λ	у

2-λ	1	Х	=	0
0	3-λ	у	-	0

2	1	Х	_	λ	0	Х
0	3	У	-	0	λ	у

2-λ	1	Х	=	0
0	3-λ	у		0

det	2-λ	1	= 0
uci	0	3-λ	- 0

2	1	Х	_	λ	0	Х
0	3	у	-	0	λ	у

2-λ	1	Х	_	0
0	3-λ	у	-	0

det	2-λ	1	= 0
401	0	3-λ	0

 $(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$

2	1	Х	_	λ	0	Х
0	3	у	-	0	λ	у

2-λ	1	Х	=	0
0	3-λ	у	-	0

det	2-λ	1	= 0
act	0	3-λ	Ŭ

Characteristic polynomial $(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0$

2	1	Х	_	λ	0	Х
0	3	у	-	0	λ	у

2-λ	1	Х	_	0
0	3-λ	у	-	0

$$\det \frac{2 \cdot \lambda}{0} \frac{1}{3 \cdot \lambda} = 0$$

Characteristic polynomial

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0 \qquad \begin{array}{c} \lambda = 2\\ \lambda = 3 \end{array}$$

If λ is an eigenvalue:

2	1	х	_	λ	0	Х	
0	3	у	-	0	λ	у	
	2-λ	1	Х		0		
				_	0		
	•	- 11	у		Ŭ		
		റ ി		1			
	det	2-λ 0	•	ן ייי	= 0		
		0	3-	λ			
						2	

Characteristic polynomial

$$(2 - \lambda)(3 - \lambda) - 1 \cdot 0 = 0 \qquad \begin{array}{c} \lambda = 2\\ \lambda = 3 \end{array}$$

If λ is an eigenvalue:

2	1	х	_	λ	0 λ	Х		
0	3	у	-	0	λ	у		
	2-λ	1	х		0			
	0	1 3-λ	у	=	0			
$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$								
							$(2-\lambda)(3-\lambda) - 1 \cdot 0 = 0$	

For infinitely many (x,y)

Characteristic polynomial

= 2 $(-\lambda) - 1 \cdot 0 = 0$ лдэ $\lambda = 3$

If λ is an eigenvalue:

2	1	х		λ	0	Х		For in	
0	3	x y	-	0	λ	у			
	2-λ	1	Х		0				
	0	1 3-λ	у	=	0			Has ir	
$\det \frac{2-\lambda}{0} \frac{1}{3-\lambda} = 0$									
$(2-\lambda)(3-\lambda) - 1 \cdot 0 = 0$							$\lambda = 2$ $\lambda = 3$		

nfinitely many (x,y)

nfinitely many solutions

Characteristic polynomial

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations

2x + y = 2x0x + 3y = 2y

Eigenvalues: $\lambda = 2$ $\lambda = 3$

x = 1

y = 0

Solve the equations

2
 1
 x

$$x$$
 $2x + y = 2x$

 0
 3
 y
 y
 y

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations

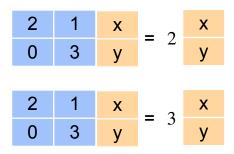
2
 1
 x

$$x$$
 $2x + y = 2x$
 $x = 1$
 1

 0
 3
 y
 y
 $0x + 3y = 2y$
 $y = 0$
 0

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations



$$2x + y = 2x x = 1$$

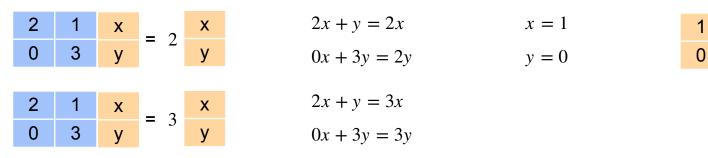
$$0x + 3y = 2y y = 0$$

1

0

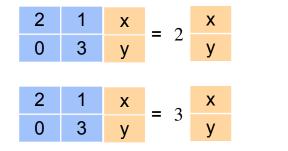
Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations



Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations



$$2x + y = 2x \qquad \qquad x = 1$$

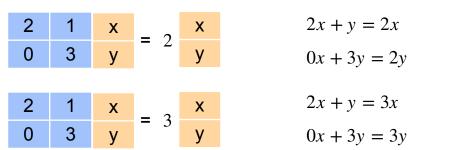
$$0x + 3y = 2y \qquad \qquad y = 0$$

$$2x + y = 3x \qquad \qquad x = 1$$

$$0x + 3y = 3y \qquad \qquad y = 1$$

Eigenvalues: $\lambda = 2$ $\lambda = 3$

Solve the equations



x = 1

$$y = 0$$

y = 1

x = 1

1

1

0

Quiz

• Find the eigenvalues and eigenvectors of this matrix:

9	4
4	3

Solution

- Eigenvalues: 11, 1
- Eigenvectors: (2,1), (-1,2)

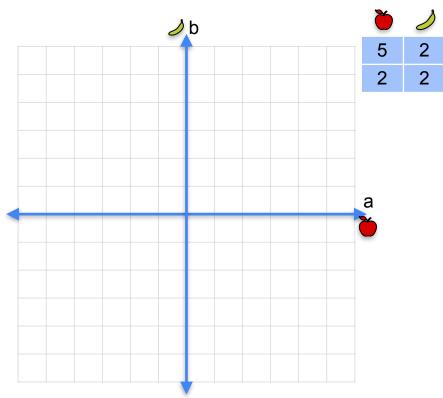
9	4
4	3

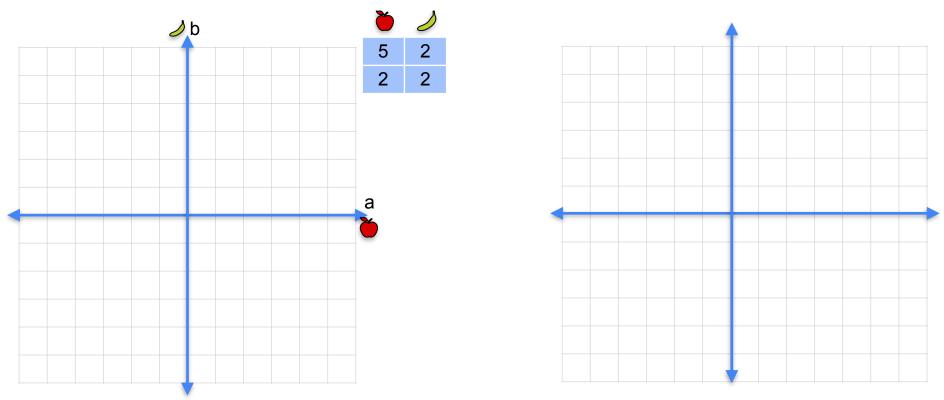
• The characteristic polynomial is

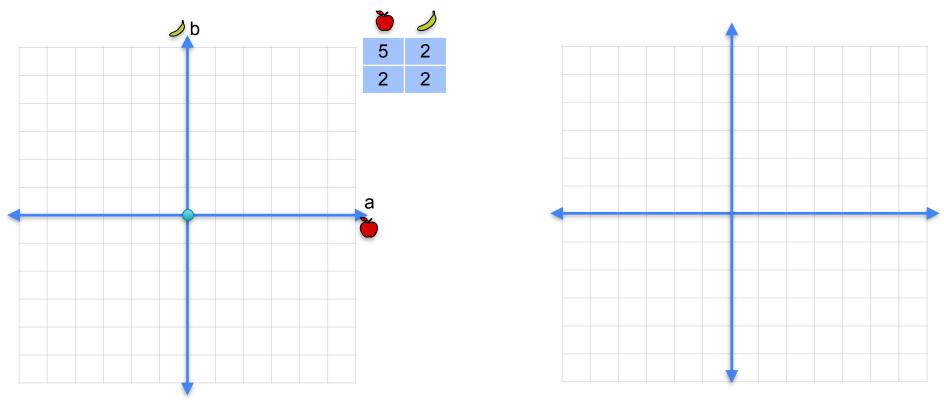
det
$$\frac{9-\lambda}{4} \frac{4}{3-\lambda} = (9-\lambda)(3-\lambda) - 4 \cdot 4 = 0$$

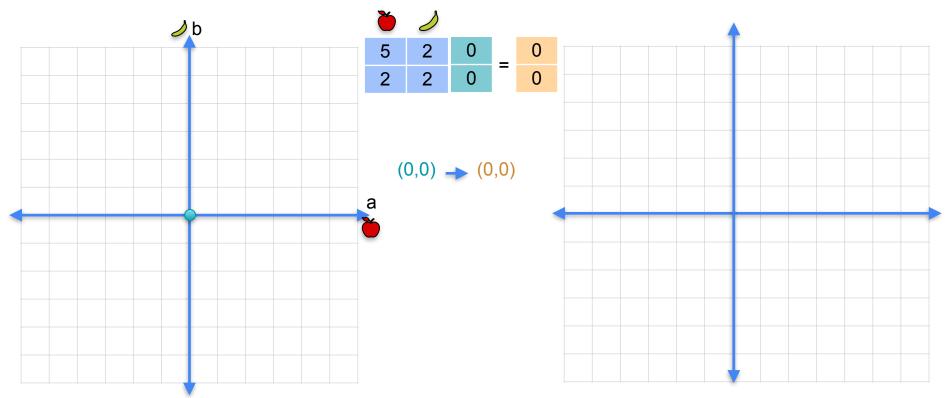
• Which factors as $\lambda^2 - 12\lambda + 11 = (\lambda - 11)(\lambda - 1)$

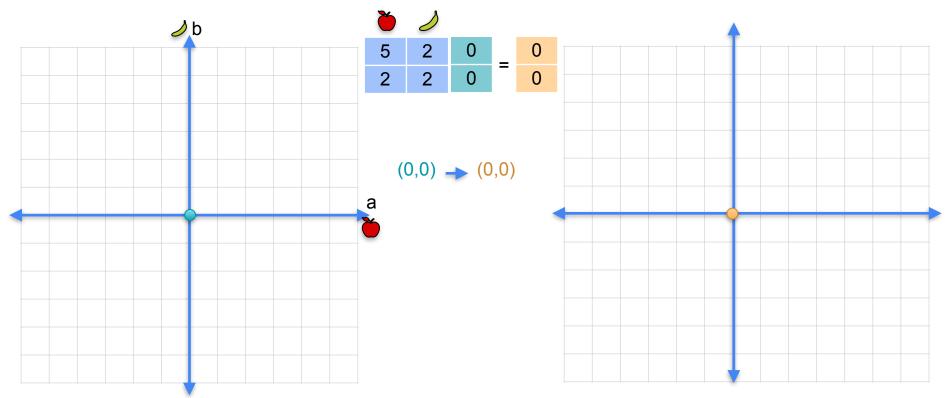
• The solutions are
$$\begin{array}{l} \lambda = 11 \\ \lambda = 1 \end{array}$$

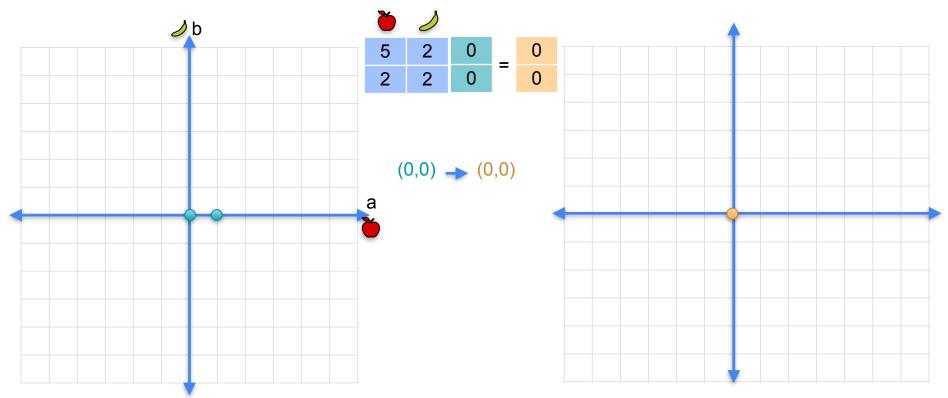


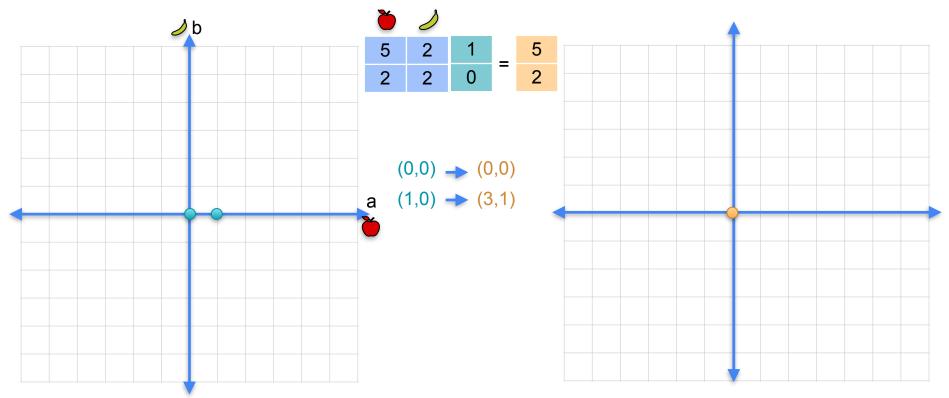


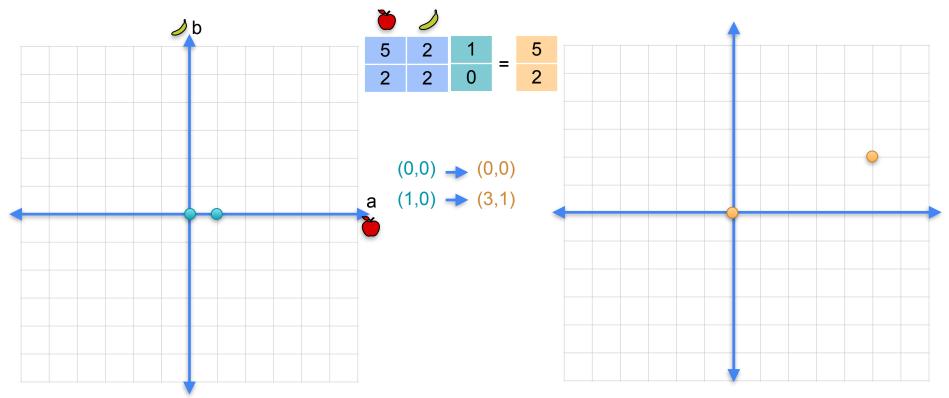


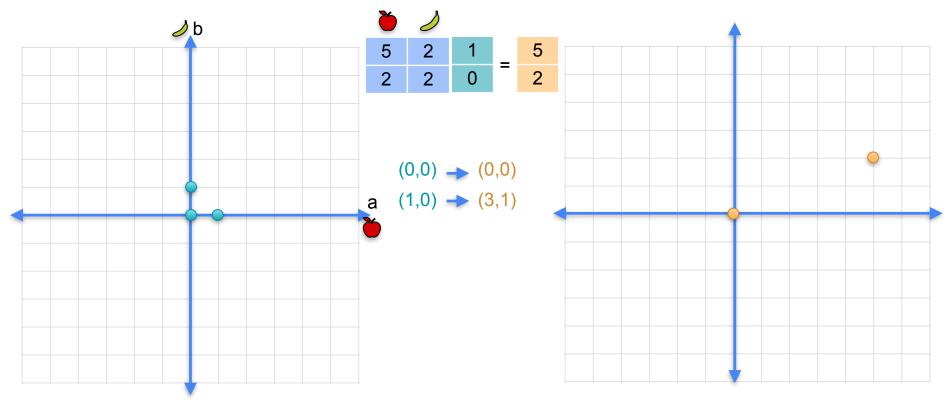


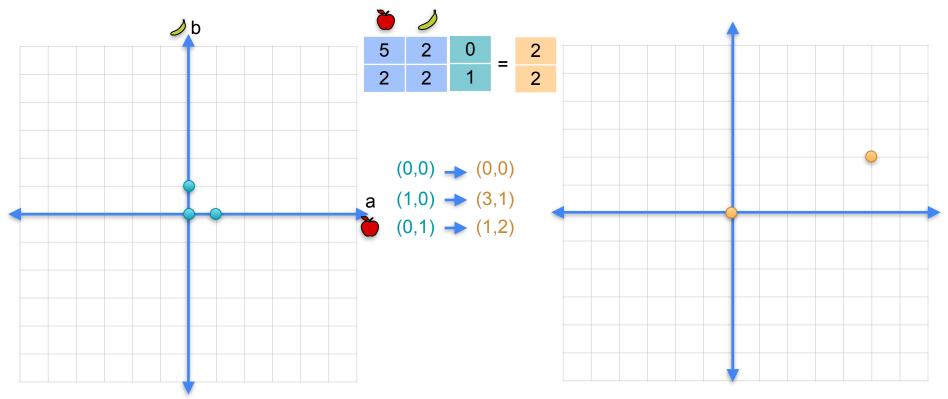


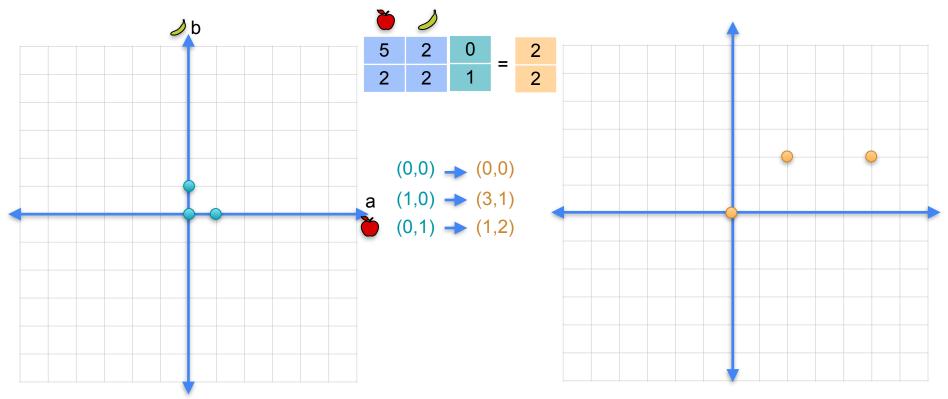


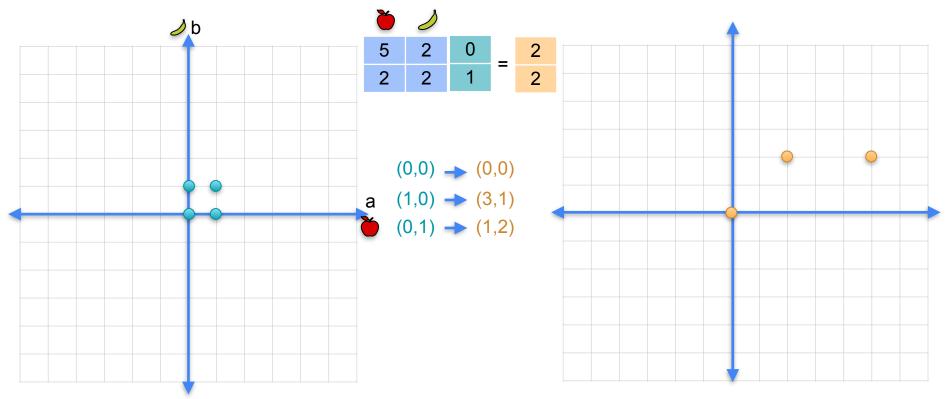




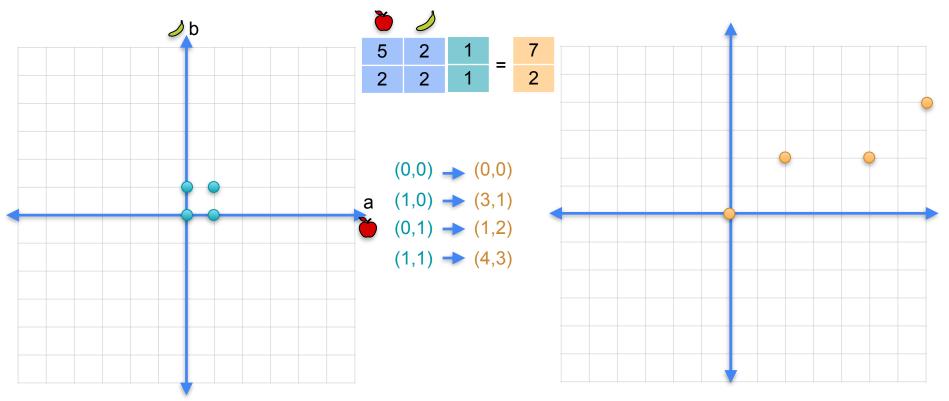


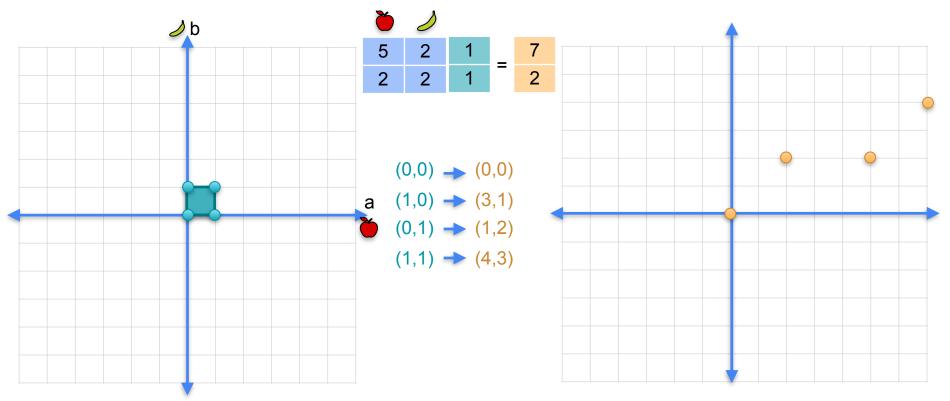


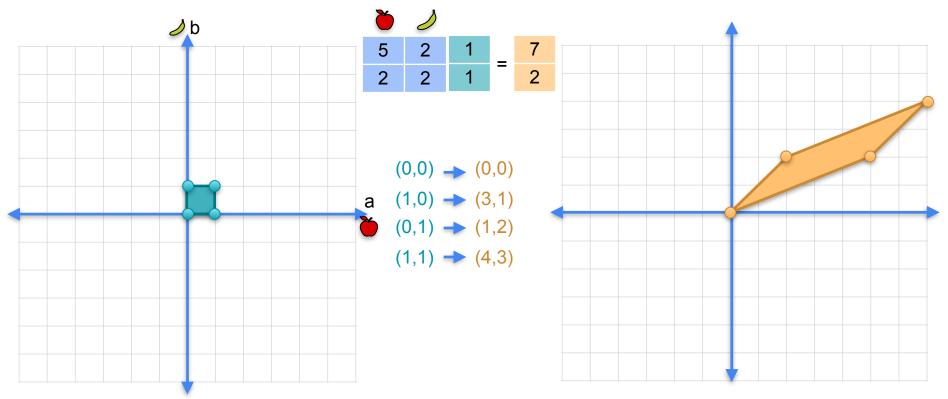




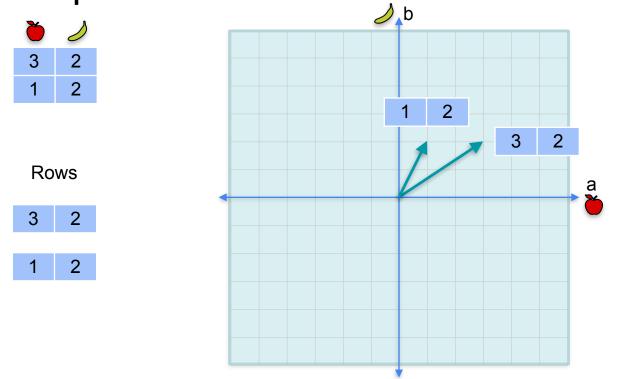




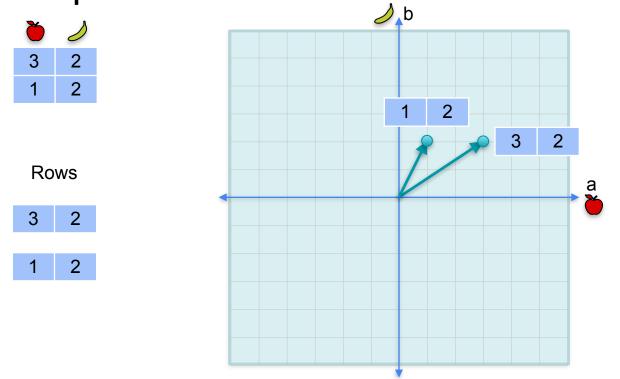




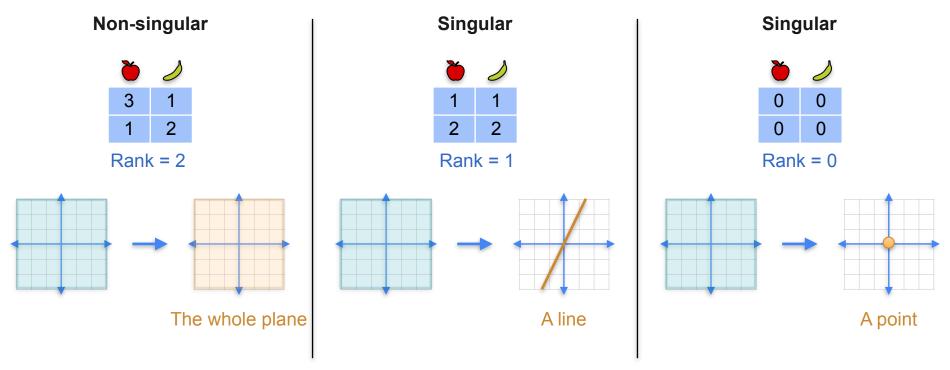
Row span of a matrix



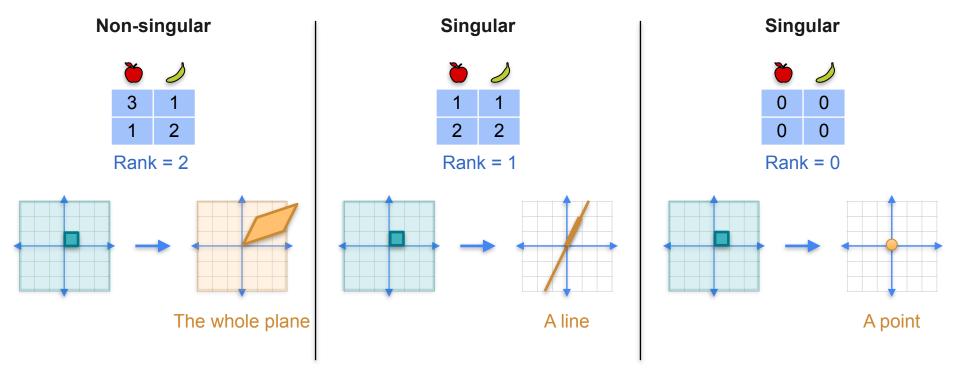
Row span of a matrix

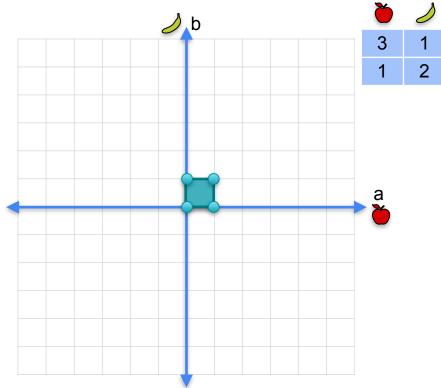


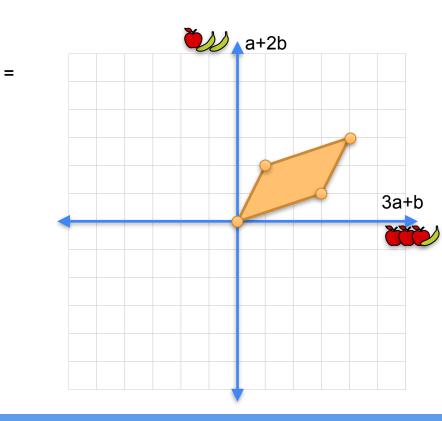
Span of the rows

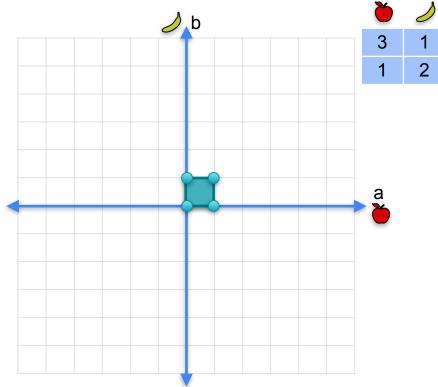


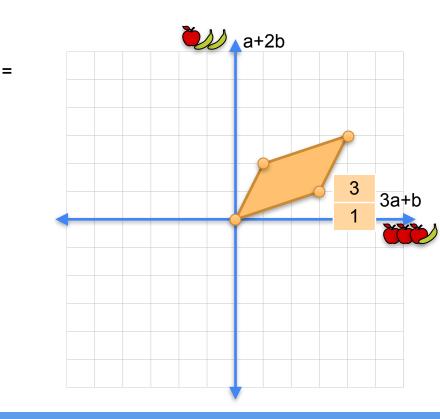
Basis vectors

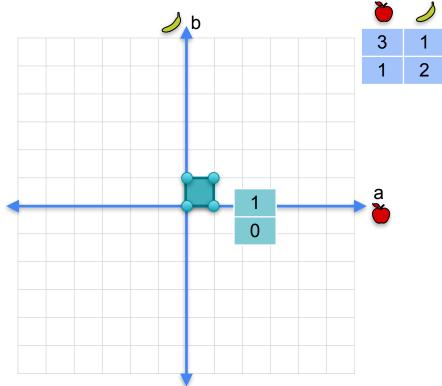


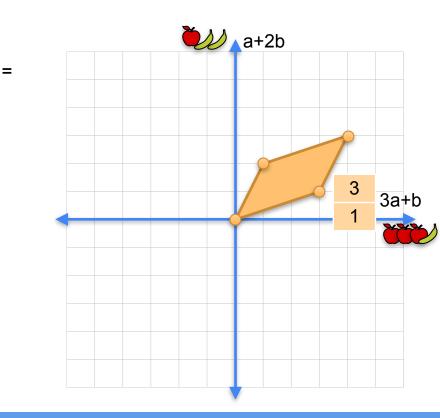


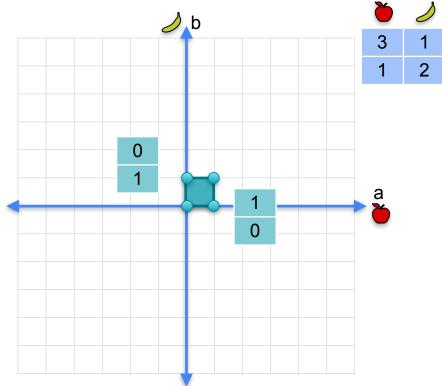


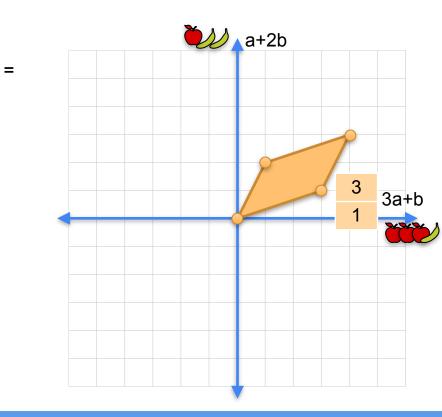


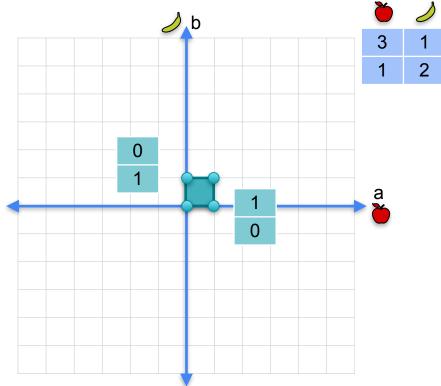


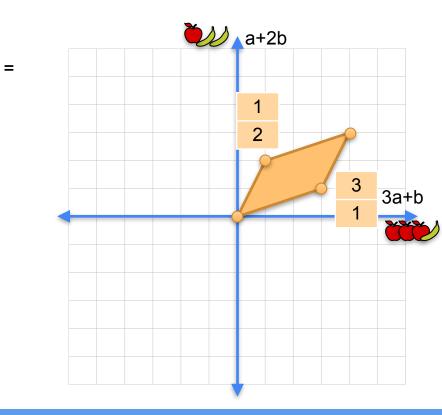


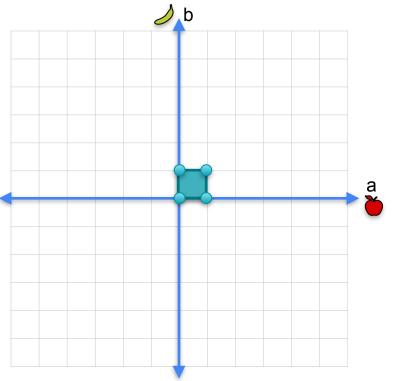


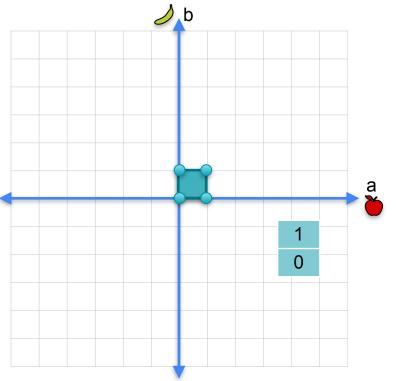




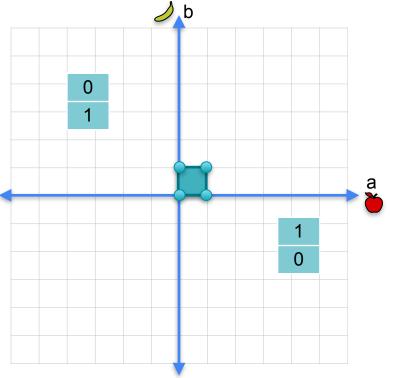








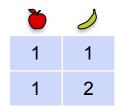
Linear transformation

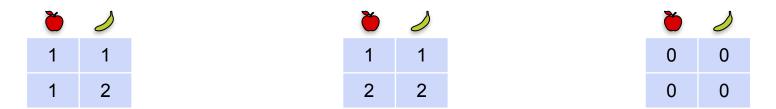


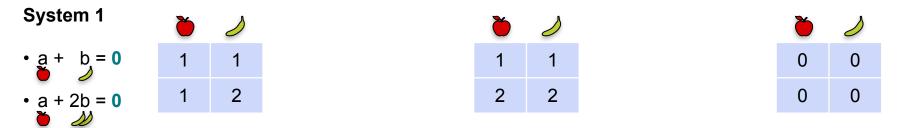
Math for Machine Learning

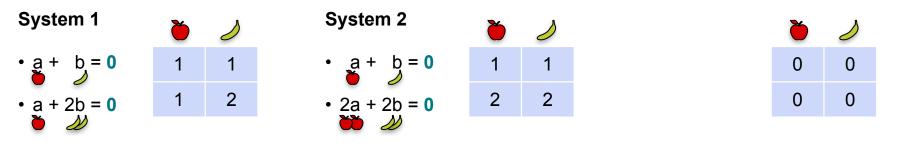
Linear algebra - Week 4

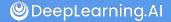
Vectors Matrices Dot product Matrix multiplication Linear transformations

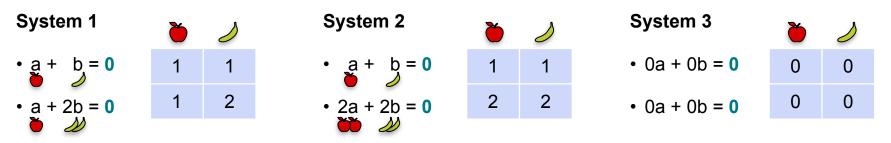


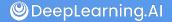


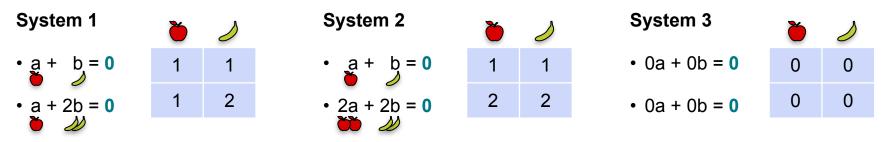




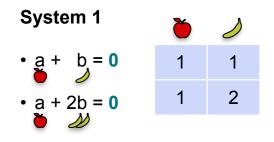




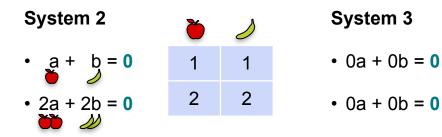


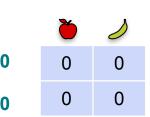


```
The only two numbers a,
b, such that
• a+b = 0
and
• a+2b = 0
are:
a=0 and b=0
```

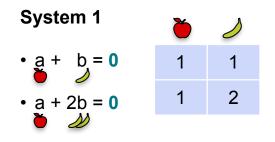


The only two numbers a,
b, such that
• a+b = 0
and
• a+2b = 0
are:
a=0 and b=0

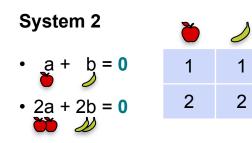


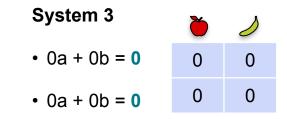


Any pair (x, -x) satisfies that • a+b = 0and • a+2b = 0For example: (1,-1), (2,-2), (-8,8), etc.



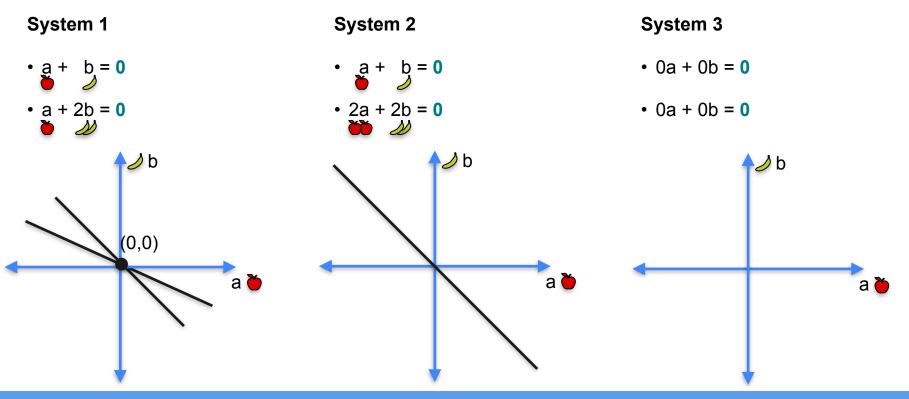
The only two numbers a, b, such that • a+b = 0 and • a+2b = 0 are: a=0 and b=0

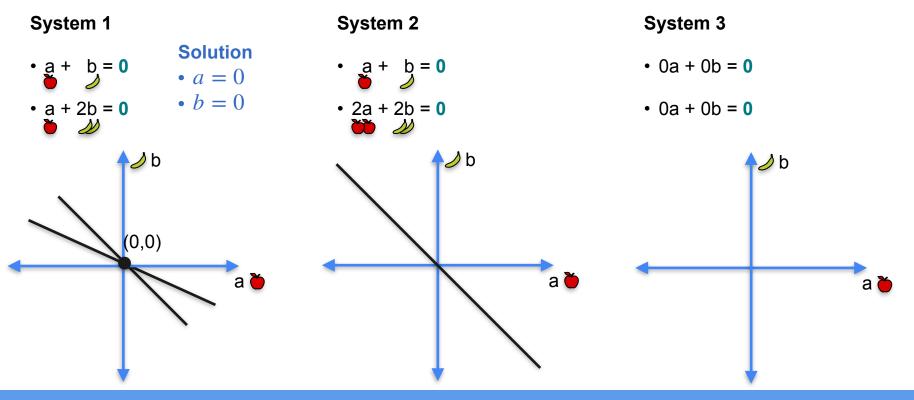


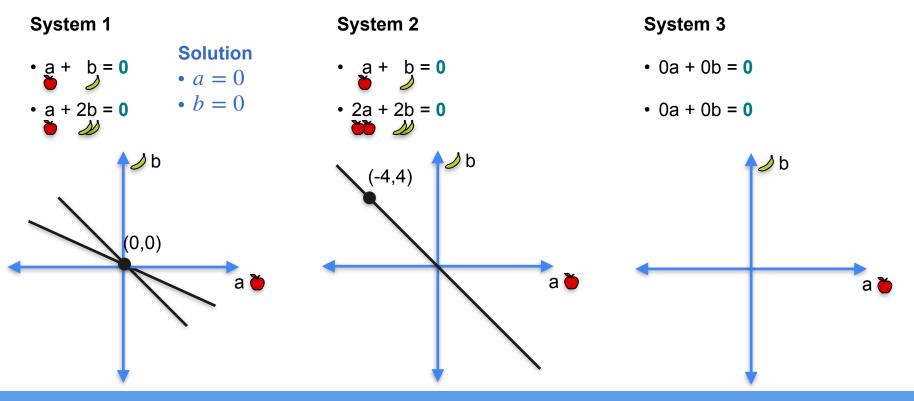


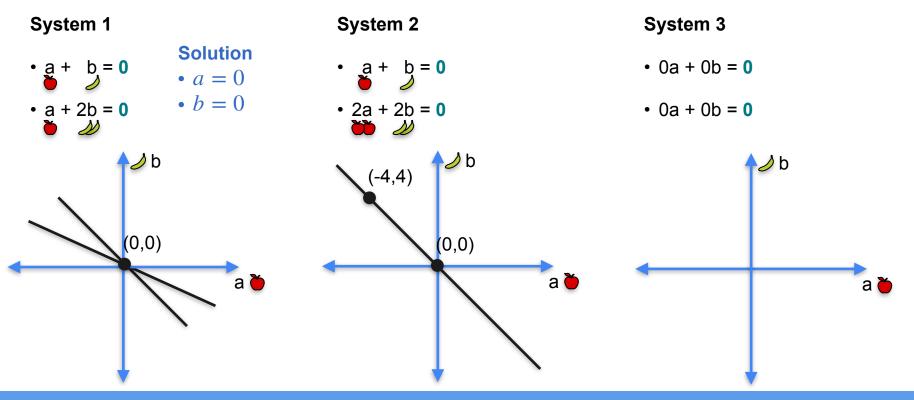
Any pair (x, -x) satisfies that • a+b = 0and • a+2b = 0For example: (1,-1), (2,-2), (-8,8), etc. Any pair of numbers satisfies that

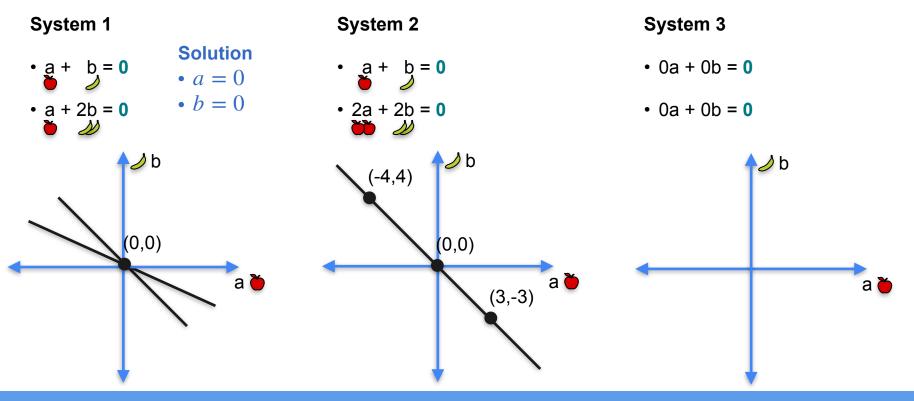
- 0a+0b = 0 and
 0a+0b = 0 For example:
- (1,2), (3,-9), (-90,8.34), etc.

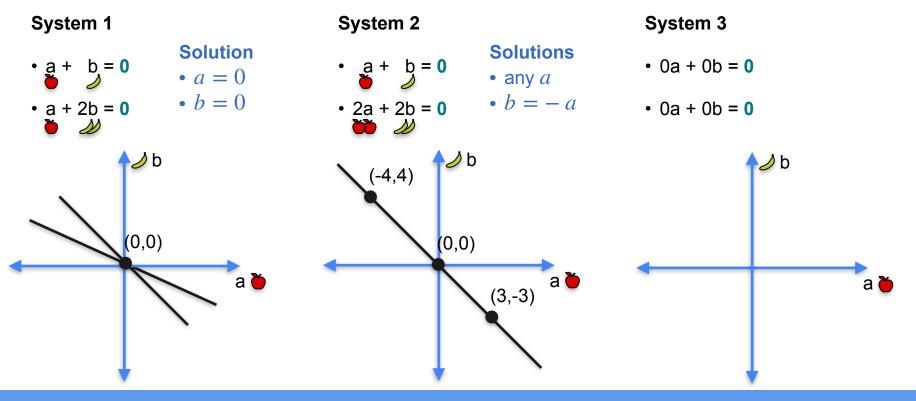


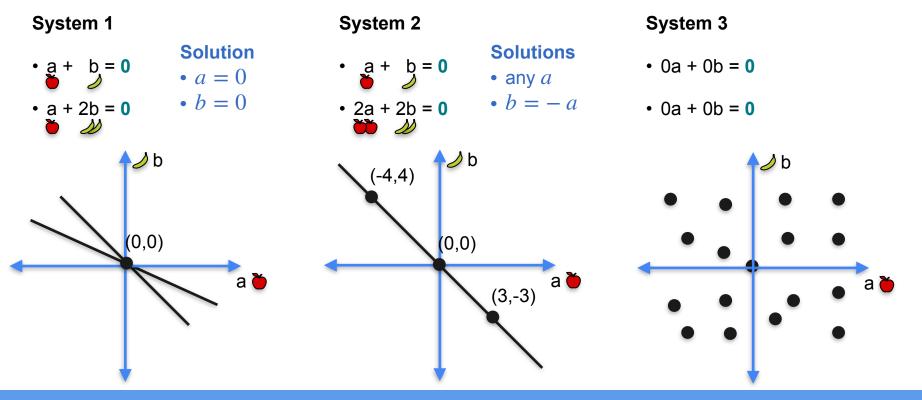


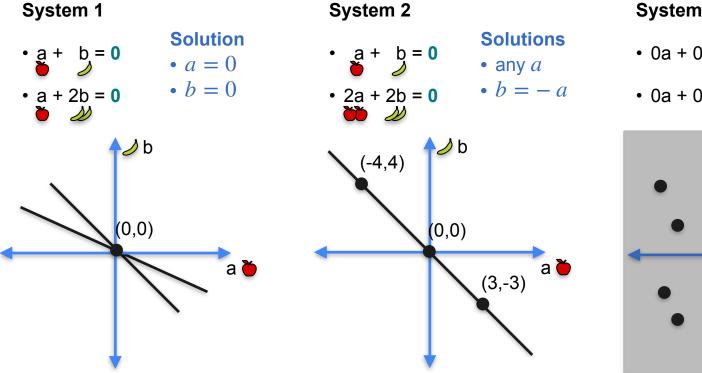






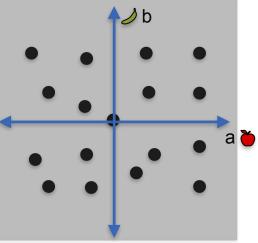


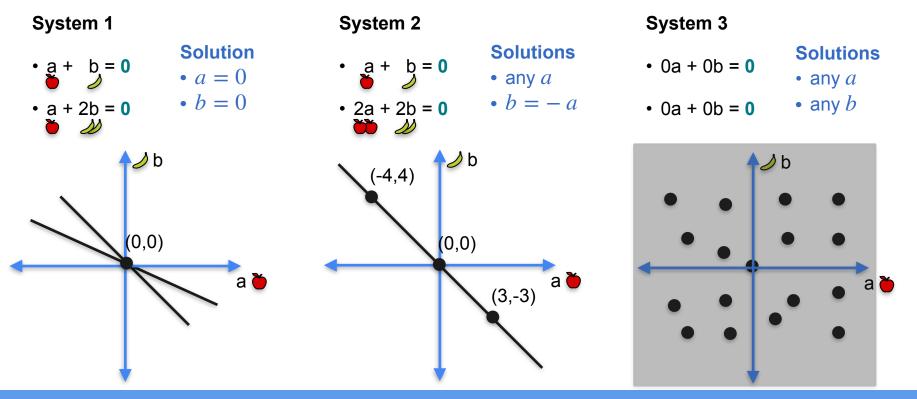


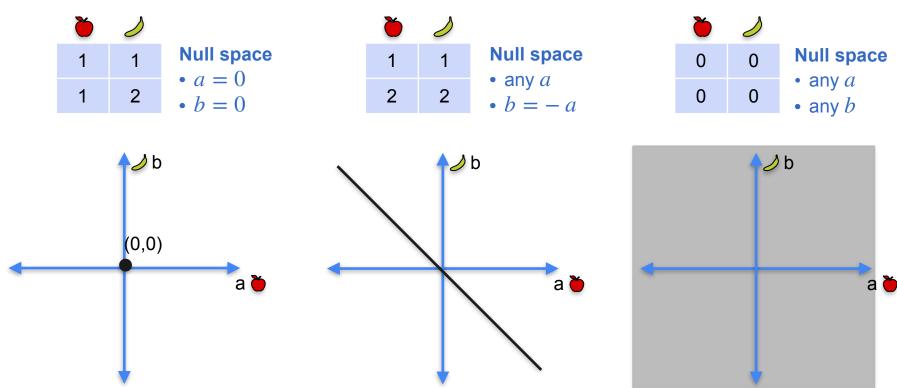


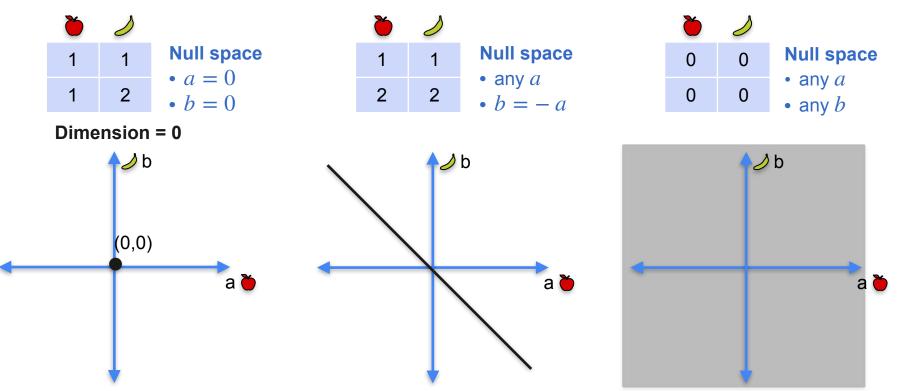
System 3

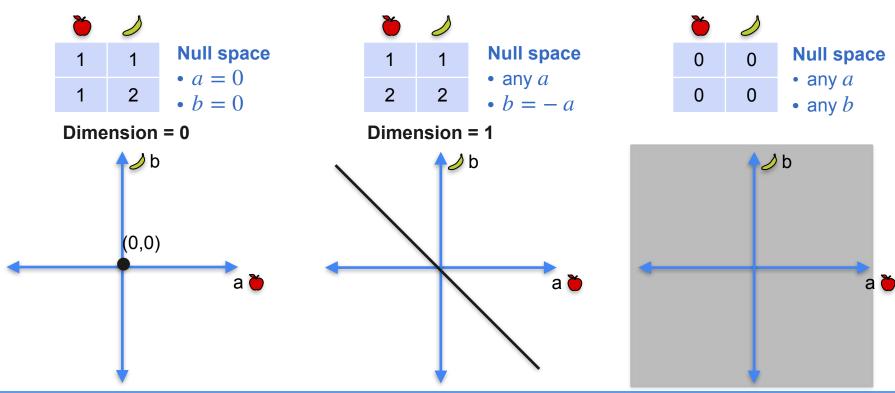
- 0a + 0b = 0
- 0a + 0b = 0

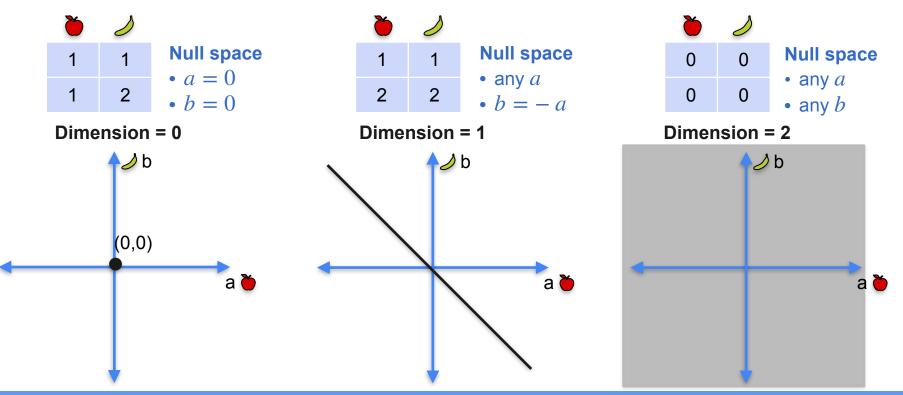


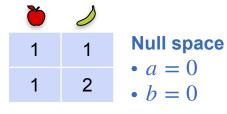




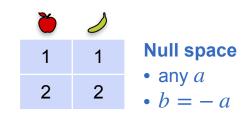




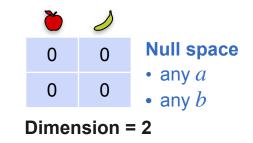


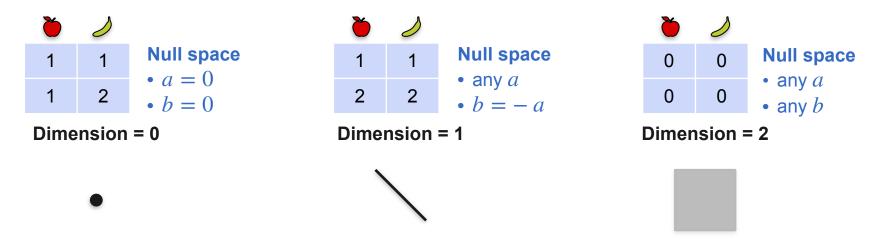


Dimension = 0

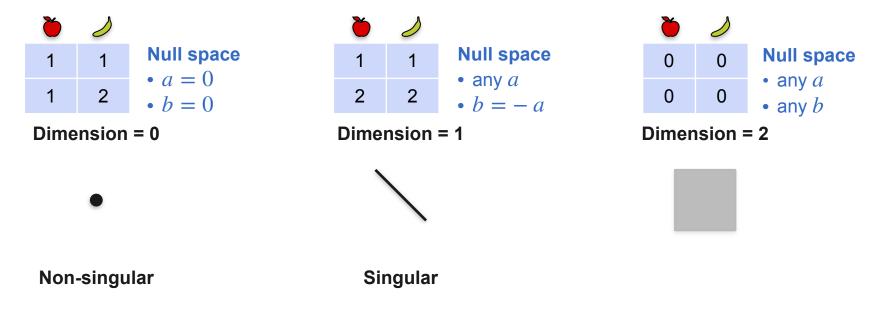


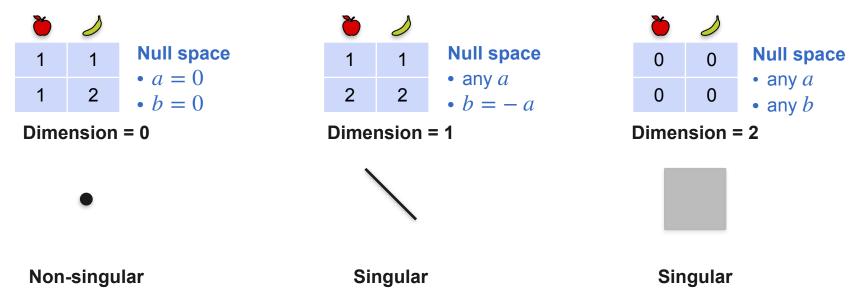
Dimension = 1

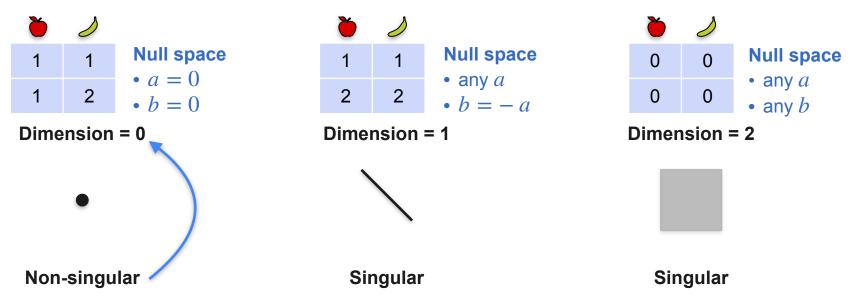




Non-singular







More conceptual explanation of the null space

• Elaborate here

Quiz: Null space of a matrix

Problem: Determine the dimension of the null space of the following two matrices

Matrix 1

5	1
-1	3

Matrix 2

2	-1
-6	3

Solutions: Null space of a matrix

Matrix 1: Notice that this is a non-singular matrix, since the determinant is 16. Therefore, the null space is only the point (0,0). The dimension is 0.

5 1 -1 3

Matrix 2: The corresponding system of equation has the equations 2ab=0 and -6a+3b=0. Some inspection shows that the first equation has the points (1,2), (2,4), (3,6), etc. as solutions. All of them are also solutions to the second equation, -6a+3b=0. Therefore the null space is all the points of the form (x, 2x). The dimension of this null space is 1, and the matrix is singular.

Systems of linear equations

Systems of linear equations

System 1

- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

System 1	System 2
• a + b + c = 0	• a + b + c = 0
• a + 2b + c = 0	• a + b + 2c = 0

• a + b + 2c = 0 • a + b + 3c = 0

System 1	System 2	System 3
• a + b + c = 0	• a + b + c = 0	• a + b + c = 0
• a + 2b + c = 0	• a + b + 2c = 0	• 2a + 2b + 2c = 0
• a + b + 2c = 0	• a + b + 3c = 0	• 3a + 3b + 3c = 0

System 1	System 2	System 3	System 4
• a + b + c = 0	• a + b + c = 0	• a + b + c = 0	• 0a + 0b + 0c = 0
• a + 2b + c = 0	• a + b + 2c = 0	• 2a + 2b + 2c = 0	• 0a + 0b + 0c = 0
• a + b + 2c = 0	• a + b + 3c = 0	• 3a + 3b + 3c = 0	• 0a + 0b + 0c = 0

System 1	System 2	System 3	System 4
• a + b + c = 0	• a + b + c = 0	• a + b + c = 0	• 0a + 0b + 0c = 0
• a + 2b + c = 0	• a + b + 2c = 0	• 2a + 2b + 2c = 0	• 0a + 0b + 0c = 0
• a + b + 2c = 0	• a + b + 3c = 0	• 3a + 3b + 3c = 0	• 0a + 0b + 0c = 0

1	1	1
1	2	1
1	1	2

System 1	System 2	System 3	System 4
• a + b + c = 0	• a + b + c = 0	• a + b + c = 0	• 0a + 0b + 0c = 0
• a + 2b + c = 0	• a + b + 2c = 0	• 2a + 2b + 2c = 0	• 0a + 0b + 0c = 0
• a + b + 2c = 0	• a + b + 3c = 0	• 3a + 3b + 3c = 0	• 0a + 0b + 0c = 0

1	1	1
1	2	1
1	1	2

1	1	1
1	1	2
1	1	3

Syste	System 1			Syste	em 2		System 3			System 4
• a +	• a + b + c = 0			• a +	b + c =	0	• a + b + c = 0			• 0a + 0b + 0c = 0
• a + 2b + c = 0				• a +	b + 2c	= 0	• 2a + 2b + 2c = 0			• 0a + 0b + 0c = 0
• a +	• a + b + 2c = 0			• a + b + 3c = 0			• 3a + 3b + 3c = 0			• 0a + 0b + 0c = 0
1	1	1		1	1	1	1	1	1	
1	2	1		1	1	2	2	2	2	
1	1	2		1	1	3	3	3	3	

S	Syste	em 1			Syste	em 2			Syste	m 3		Syste	em 4	
• a + b + c = 0			• a + b + c = 0			• a + b + c = 0			• a +	b + c =	0	• 0a +	- 0b +	0c = 0
• a + 2b + c = 0			• a + 2b + c = 0			• a + b + 2c = 0			• 2a +	- 2b + 2	2c = 0	• 0a +	- 0b +	0c = 0
•	a +	b + 2c	= 0		• a +	b + 3c	= 0		• 3a + 3b + 3c = 0		• 0a + 0b + 0c = 0		0c = 0	
												•	•	0
	1	1	1		1	1	1		1	1	1	0	0	0
	1	2	1		1	1	2		2	2	2	0	0	0
	1	1	2		1	1	3		3	3	3	0	0	0

System 1	System 2	System 3	System 4
• a + b + c = 0	• a + b + c = 0	• a + b + c = 0	• 0a + 0b + 0c = 0
• a + 2b + c = 0	• a + b + 2c = 0	• 2a + 2b + 2c = 0	• 0a + 0b + 0c = 0
• a + b + 2c = 0	• a + b + 3c = 0	• 3a + 3b + 3c = 0	• 0a + 0b + 0c = 0

System 1	System 2	System 3	System 4
• a + b + c = 0	• a + b + c = 0	• a + b + c = 0	• 0a + 0b + 0c = 0
• a + 2b + c = 0	• a + b + 2c = 0	• 2a + 2b + 2c = 0	• 0a + 0b + 0c = 0
• a + b + 2c = 0	• a + b + 3c = 0	• 3a + 3b + 3c = 0	• 0a + 0b + 0c = 0

Solution space

0

System 1	System 2	System 3	System 4
• a + b + c = 0	• a + b + c = 0	• a + b + c = 0	• 0a + 0b + 0c = 0
• a + 2b + c = 0	• a + b + 2c = 0	• 2a + 2b + 2c = 0	• 0a + 0b + 0c = 0
• a + b + 2c = 0	• a + b + 3c = 0	• 3a + 3b + 3c = 0	• 0a + 0b + 0c = 0

Solution space

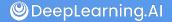
Solution space

System 1	System 2	System 3	System 4
• a + b + c = 0	• a + b + c = 0	• a + b + c = 0	• 0a + 0b + 0c = 0
• a + 2b + c = 0	• a + b + 2c = 0	• 2a + 2b + 2c = 0	• 0a + 0b + 0c = 0
• a + b + 2c = 0	• a + b + 3c = 0	• 3a + 3b + 3c = 0	• 0a + 0b + 0c = 0
Solution space	Solution space	Solution space	

System 1	System 2	System 3	System 4
• a + b + c = 0	• a + b + c = 0	• a + b + c = 0	• 0a + 0b + 0c = 0
• a + 2b + c = 0	• a + b + 2c = 0	• 2a + 2b + 2c = 0	• 0a + 0b + 0c = 0
• a + b + 2c = 0	• a + b + 3c = 0	• 3a + 3b + 3c = 0	• 0a + 0b + 0c = 0
Solution space	Solution space	Solution space	Solution space
•			

System 1	System 2	System 3	System 4
• a + b + c = 0	• a + b + c = 0	• a + b + c = 0	• 0a + 0b + 0c = 0
• a + 2b + c = 0	• a + b + 2c = 0	• 2a + 2b + 2c = 0	• 0a + 0b + 0c = 0
• a + b + 2c = 0	• a + b + 3c = 0	• 3a + 3b + 3c = 0	• 0a + 0b + 0c = 0
Solution space	Solution space	Solution space	Solution space
Dimension = 0			

System 1	System 2	System 3	System 4
• a + b + c = 0	• a + b + c = 0	• a + b + c = 0	• 0a + 0b + 0c = 0
• a + 2b + c = 0	• a + b + 2c = 0	• 2a + 2b + 2c = 0	• 0a + 0b + 0c = 0
• a + b + 2c = 0	• a + b + 3c = 0	• 3a + 3b + 3c = 0	• 0a + 0b + 0c = 0
Solution space	Solution space	Solution space	Solution space
•			
Dimension = 0	Dimension = 1		



System 1	System 2	System 3	System 4
• a + b + c = 0	• a + b + c = 0	• a + b + c = 0	• 0a + 0b + 0c = 0
• a + 2b + c = 0	• a + b + 2c = 0	• 2a + 2b + 2c = 0	• 0a + 0b + 0c = 0
• a + b + 2c = 0	• a + b + 3c = 0	• 3a + 3b + 3c = 0	• 0a + 0b + 0c = 0
Solution space	Solution space	Solution space	Solution space
•			
Dimension = 0	Dimension = 1	Dimension = 2	

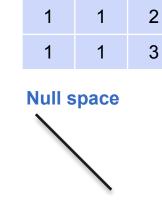
System 1	System 2	System 3	System 4
• a + b + c = 0	• a + b + c = 0	• a + b + c = 0	• 0a + 0b + 0c = 0
• a + 2b + c = 0	• a + b + 2c = 0	• 2a + 2b + 2c = 0	• 0a + 0b + 0c = 0
• a + b + 2c = 0	• a + b + 3c = 0	• 3a + 3b + 3c = 0	• 0a + 0b + 0c = 0
Solution space	Solution space	Solution space	Solution space
•			
Dimension = 0	Dimension = 1	Dimension = 2	Dimension = 3

Null space for matrices

Matrix 1

1	1	1
1	2	1
1	1	2

Null space



1

1

Matrix 2

1

Dimension = 0

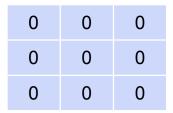
Dimension = 1

Matrix 3

Matrix 4

1	1	1
2	2	2
3	3	3

Dimension = 2



Null space

Dimension = 3

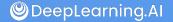
Quiz: Null space

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
0	1	0
3	2	3

Problem: Determine the dimension of the null space for the following matrices.

	0	1
	1	0
2		3
c =	0	
0		
⊦ 2b	+	· 3c = (



Problem: Determine the dimension of the null space for the following matrices.

	0	1
	1	0
	2	3
•	c = 0	
()	
	+ 2b +	3c = (

All points of the form (x, 0, -x)

(x,0,-x)

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
	1	0
3	2	3
a +	- c = 0	
• b = 0		
• 3a + 2b + 3c = 0		
	oints o	

Dimension = 1

Problem: Determine the dimension of the null space for the following matrices.

1	0	1
)	1	0
3	2	3
• a +	- c = 0	
• b = 0		
• 3a + 2b + 3c = 0		
All points of the form $(x,0, -x)$		
	nsion :	= 1

Problem: Determine the dimension of the null space for the following matrices.

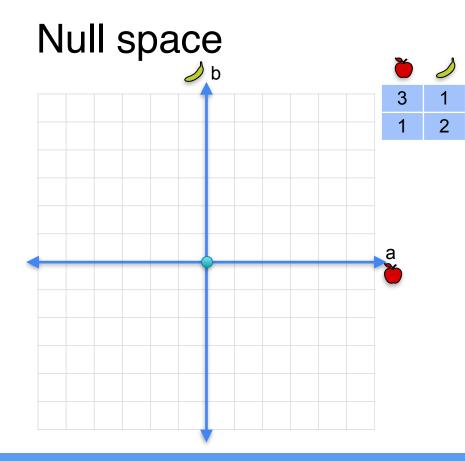
	0	1
0	1	0
3	2	3
• a +	- c = 0	
• b = 0		
• 3a + 2b + 3c = 0		
All points of the form $(x,0, -x)$		
Dime	nsion	= 1

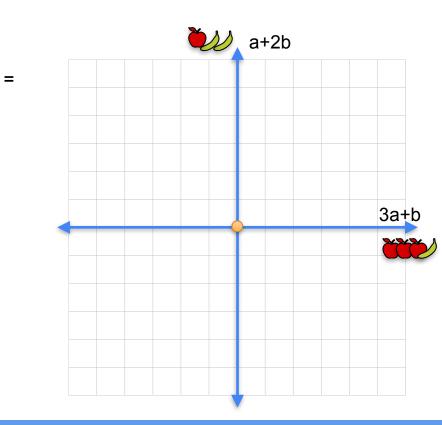
Problem: Determine the dimension of the null space for the following matrices.

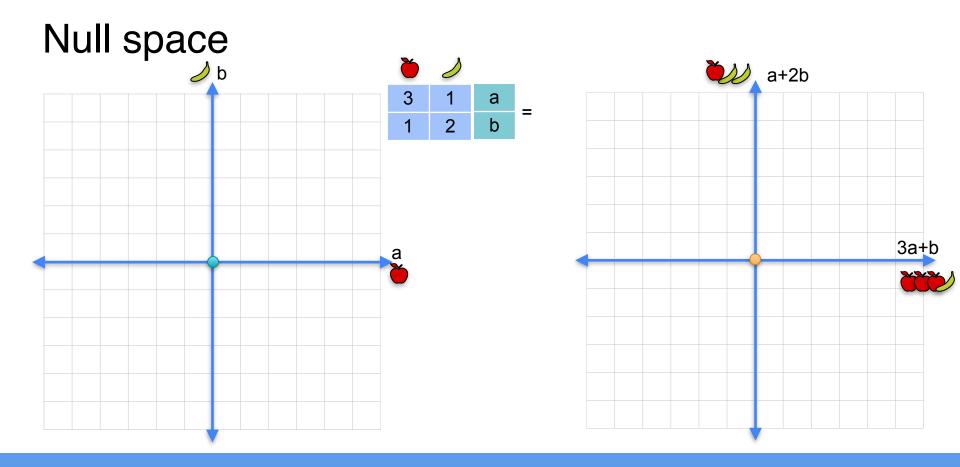
1	0	1	
0	1	0	
3	2	3	
• a +	c = 0		
• b = 0			
• 3a + 2b + 3c = 0			
All points of the $(x,0, -x)$ Dimension = 1			

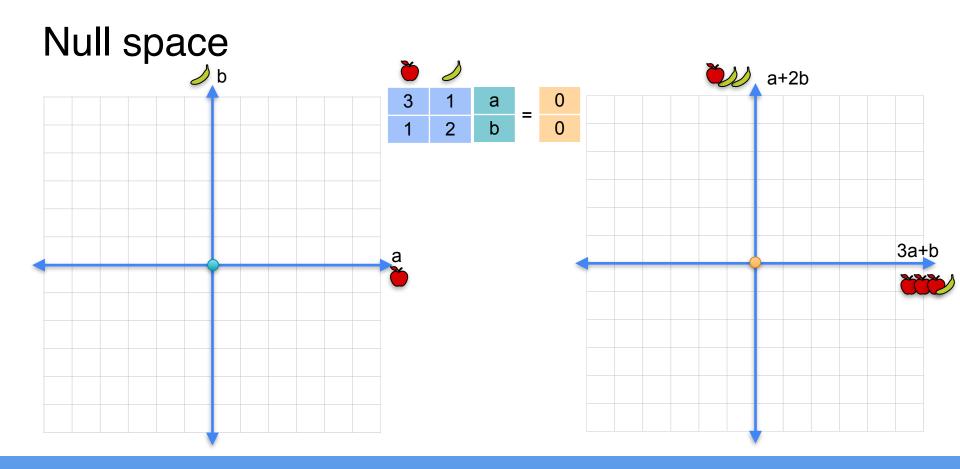
Problem: Determine the dimension of the null space for the following matrices.

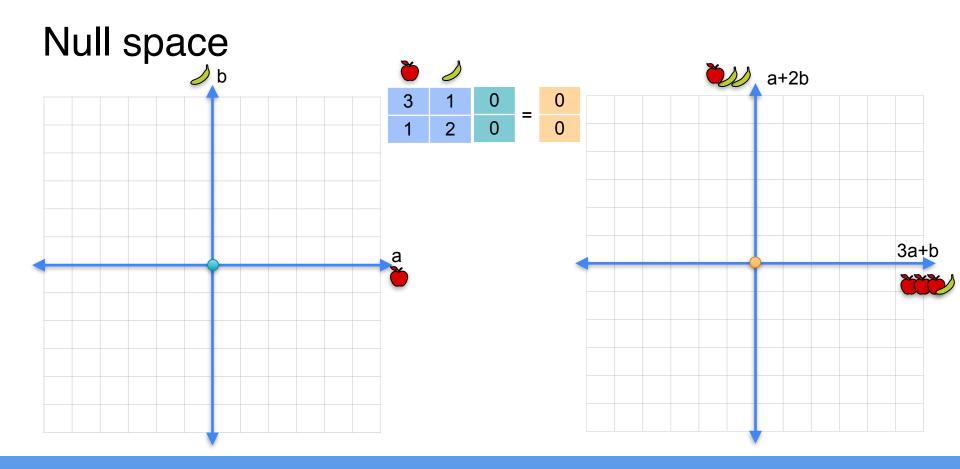
Dimension = 1		Dimension = 1						• 3c = 0 The point (0,0,0) Dimension =					
All points of the form $(x,0, -x)$			All points of the form $(x, -x, 0)$										
• 3a + 2b + 3c = 0			• c = 0										
• b = 0			• a + b + 2c = 0						• 2b + 2c = (
• a + c = 0			• a + b + c = 0						• a + b + c =				
3	2	3			0	0	-1				0	0	
0	1	0			1	1	2				0	2	
1	0	1			1	1	1				1	1	

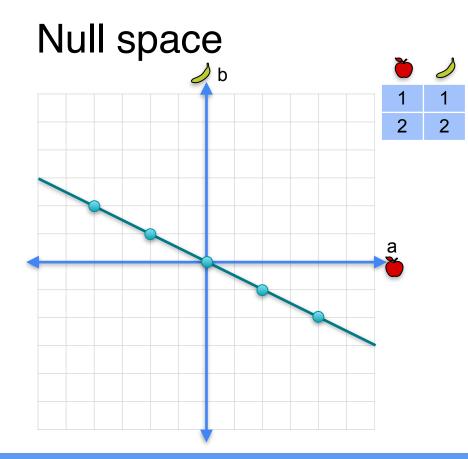


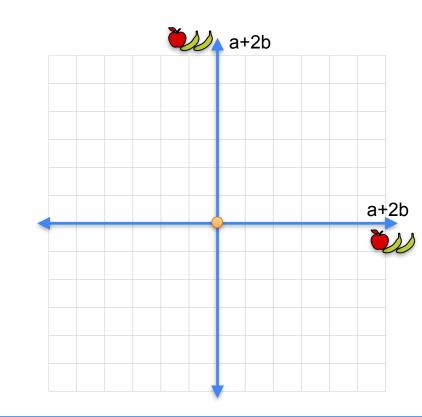




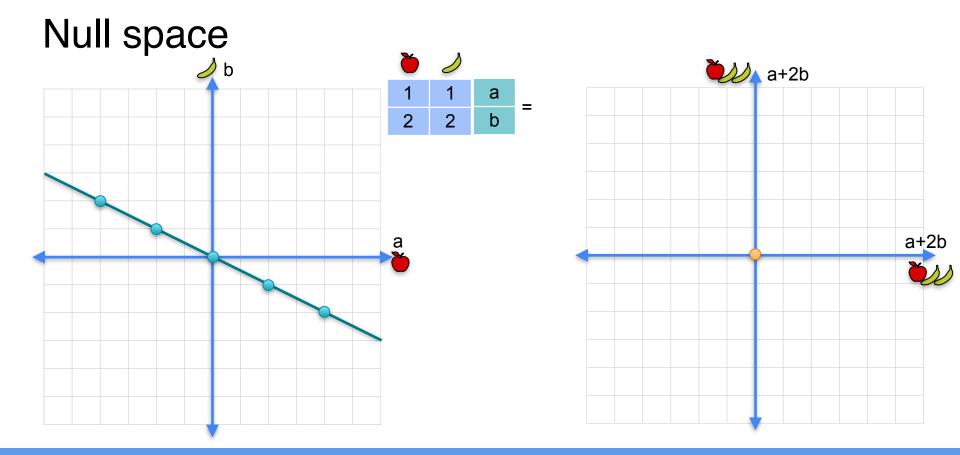


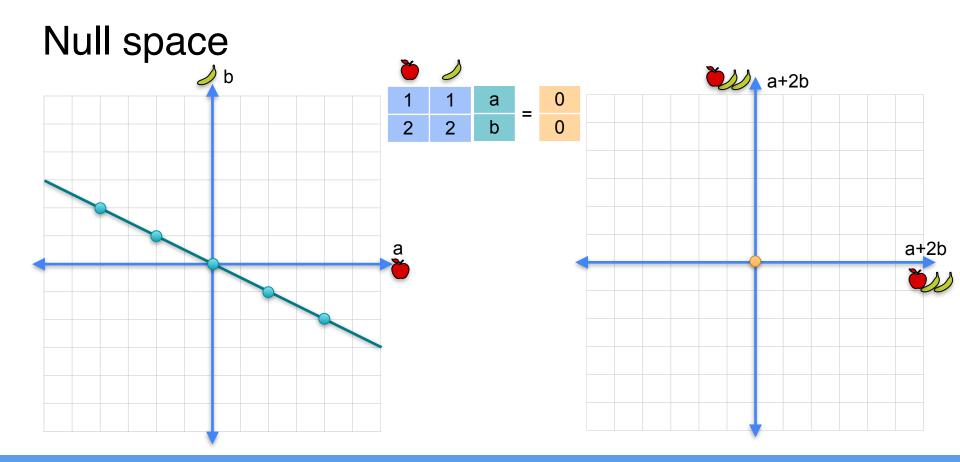


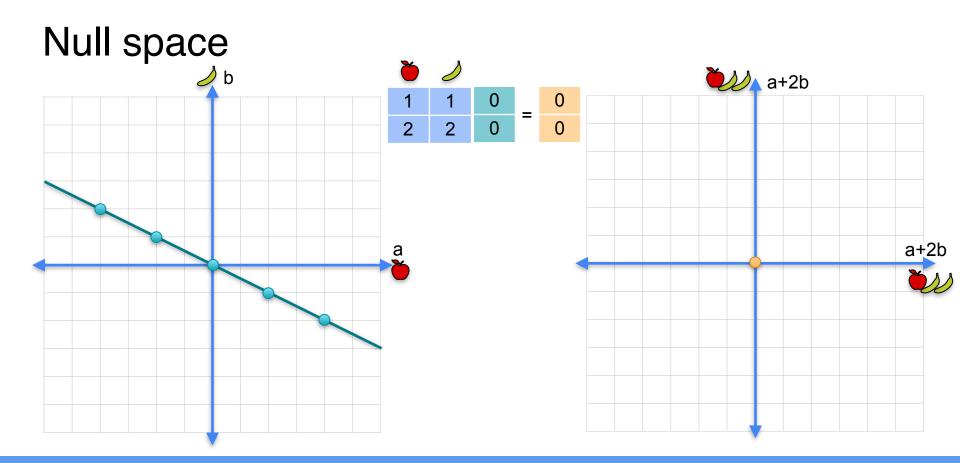


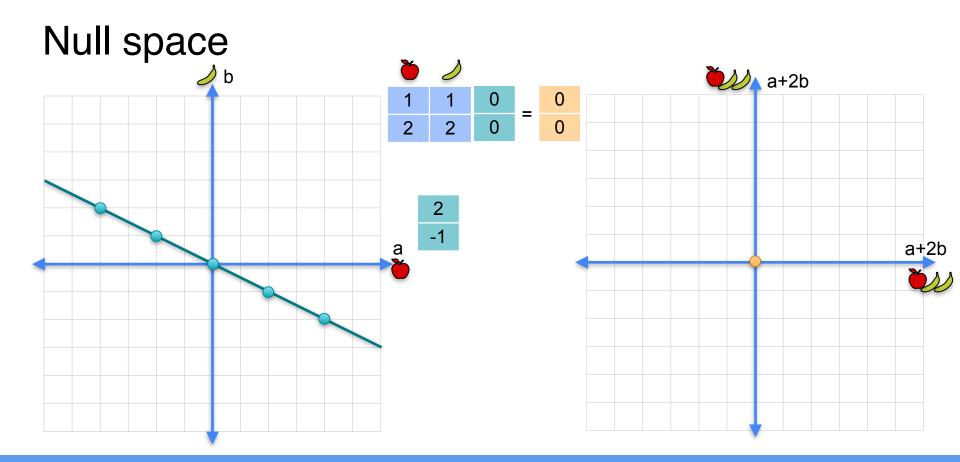


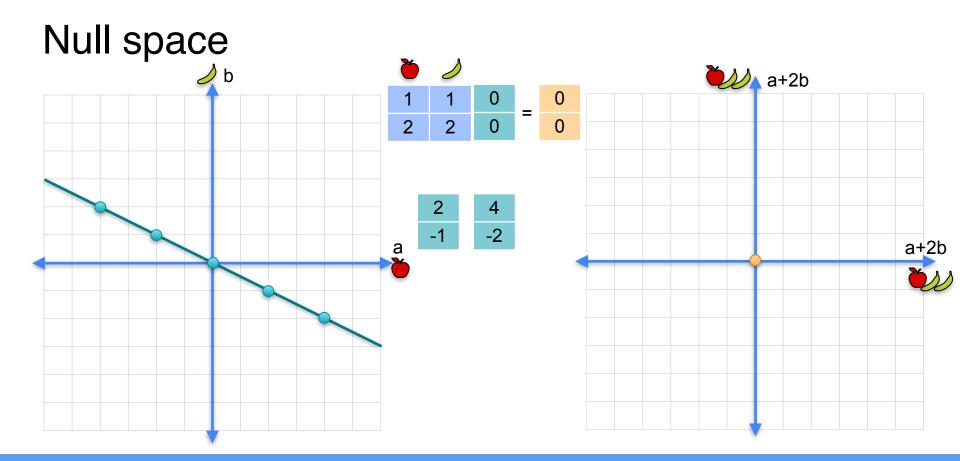
=

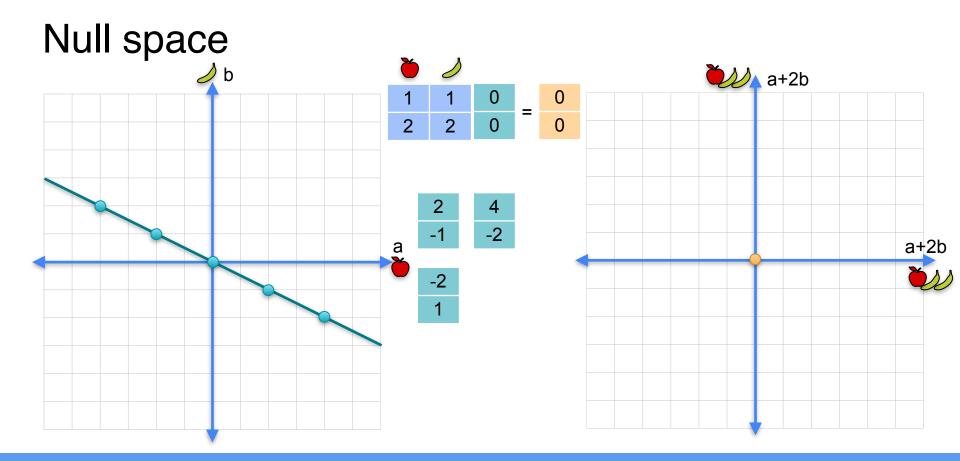


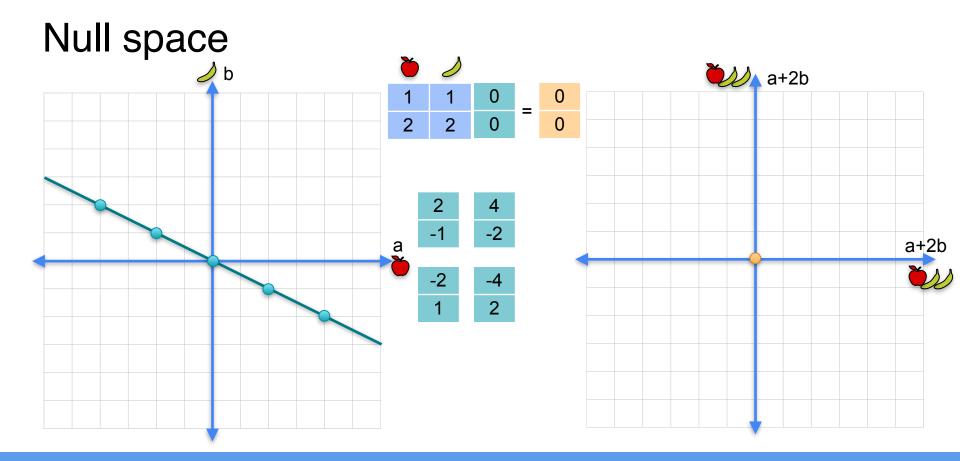


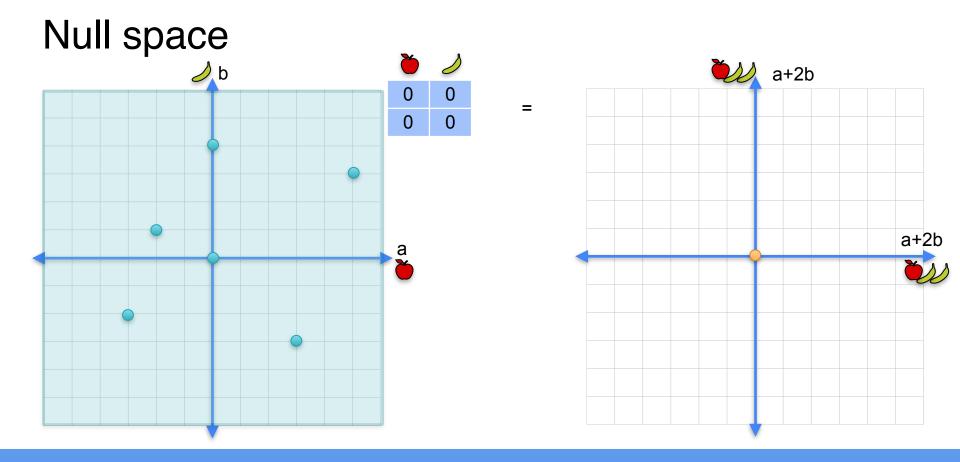


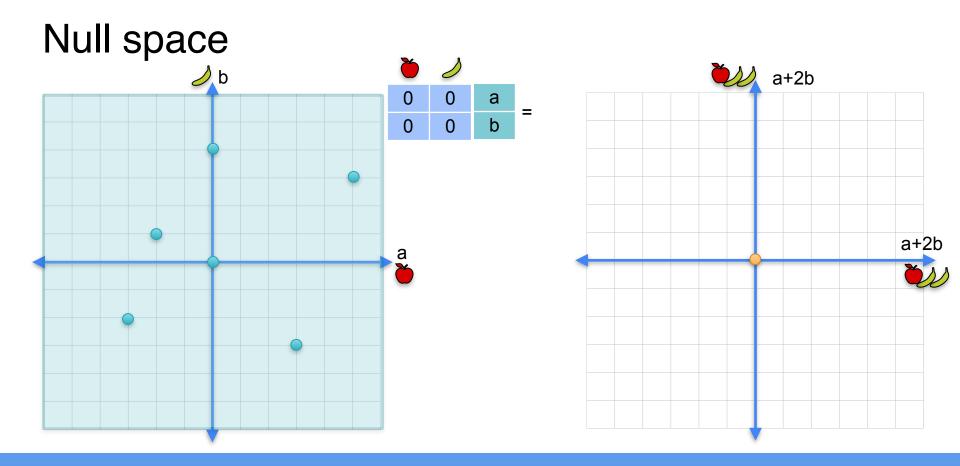


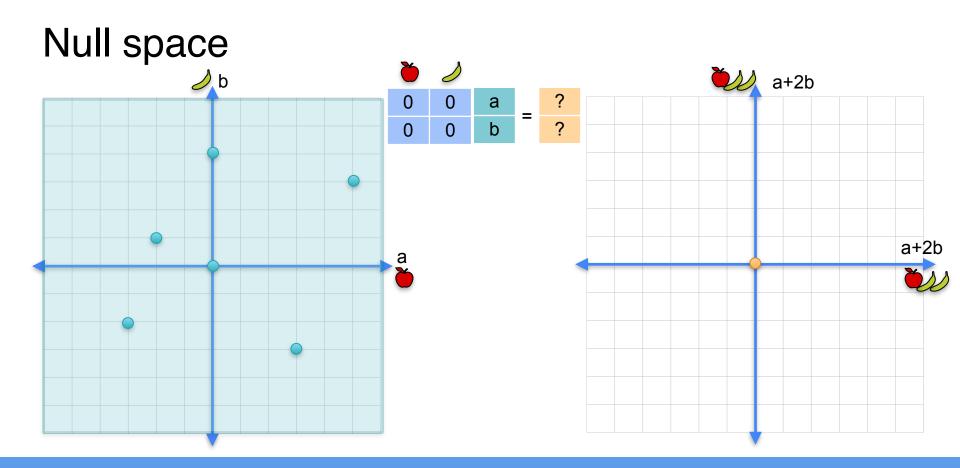


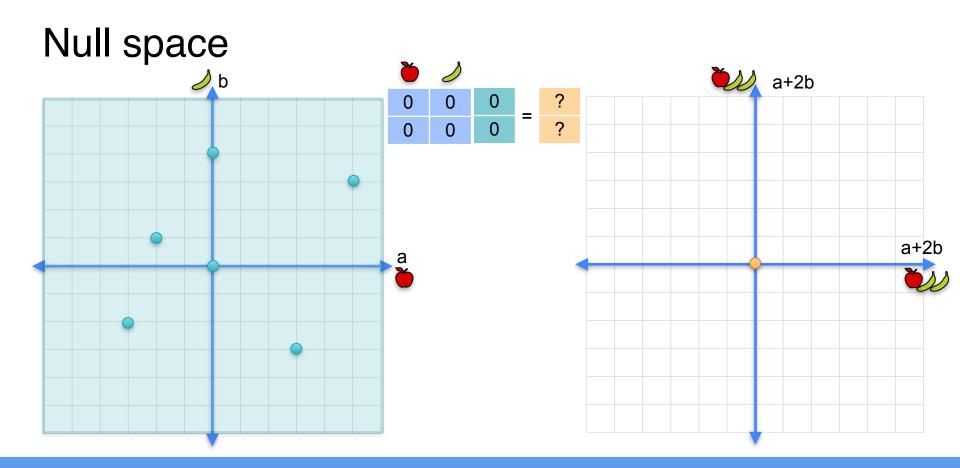


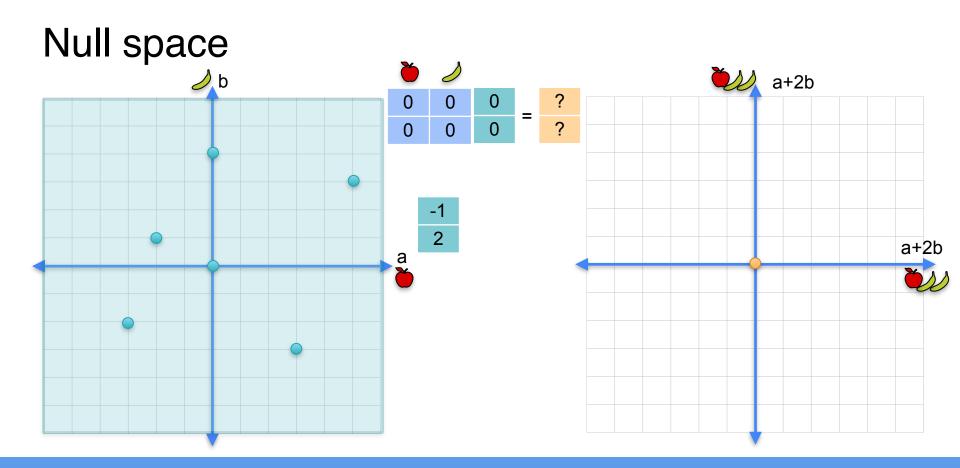


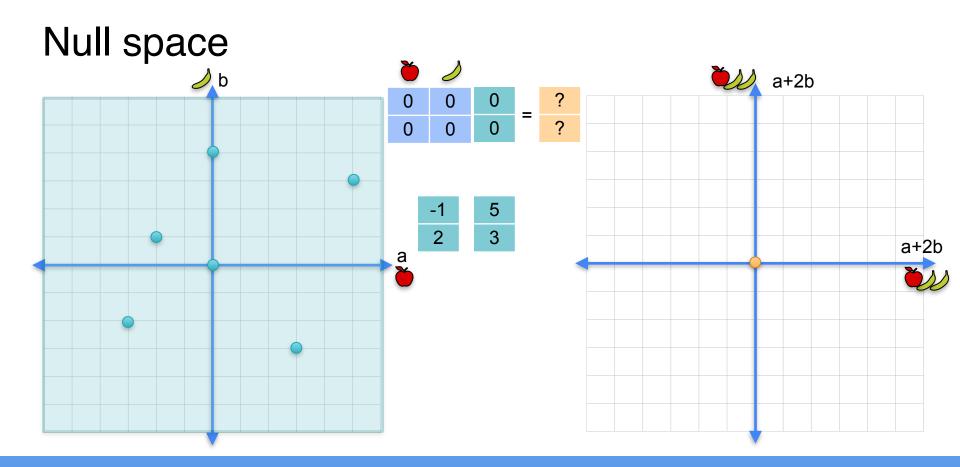


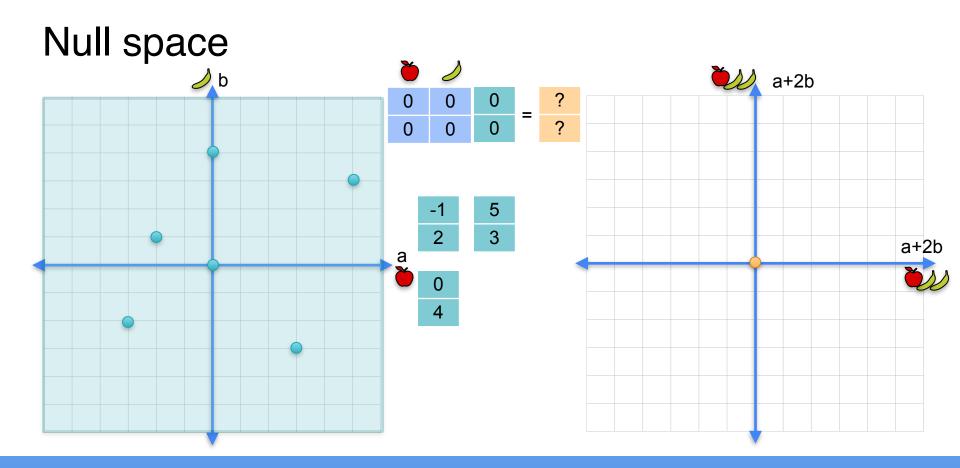


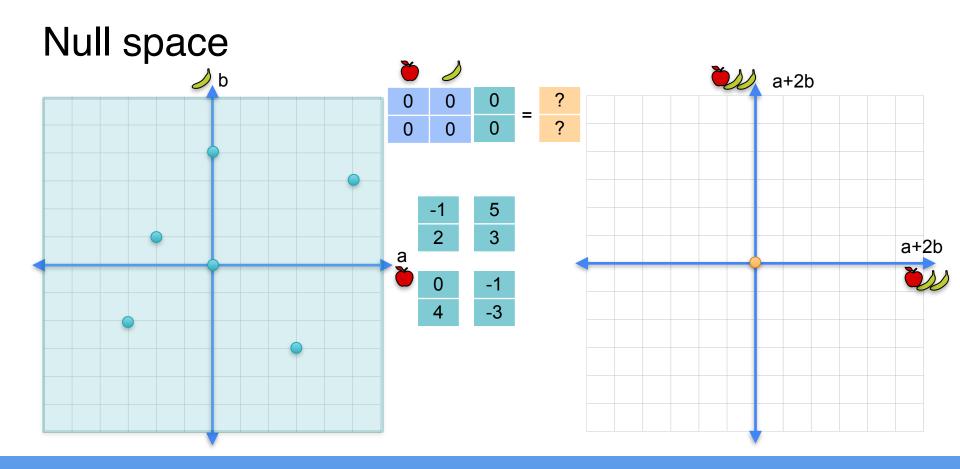


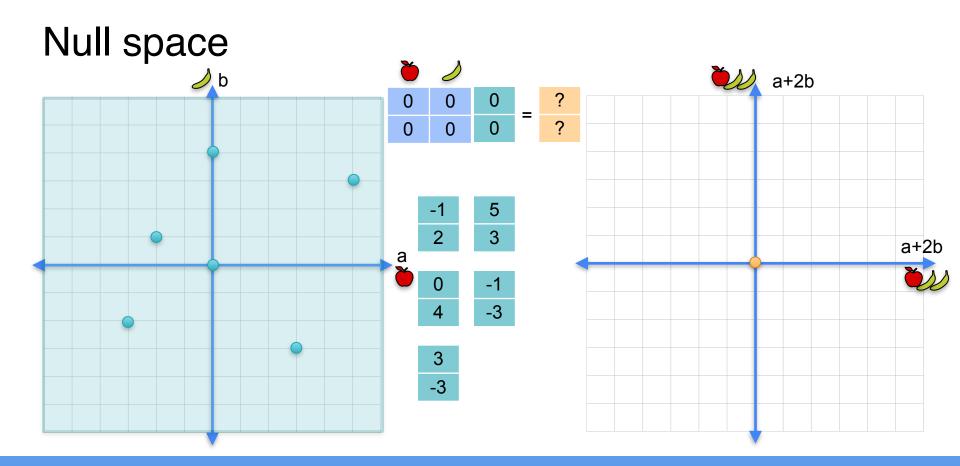




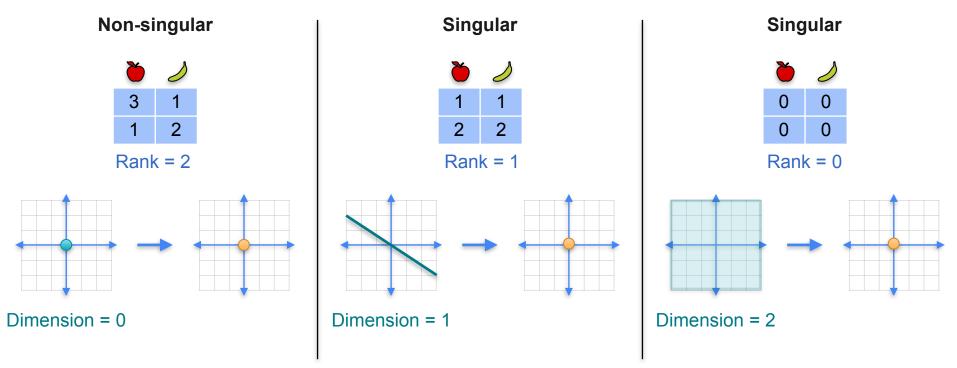




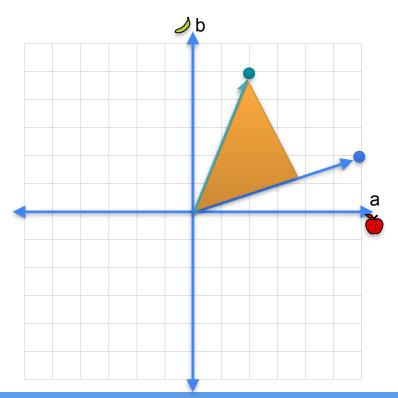


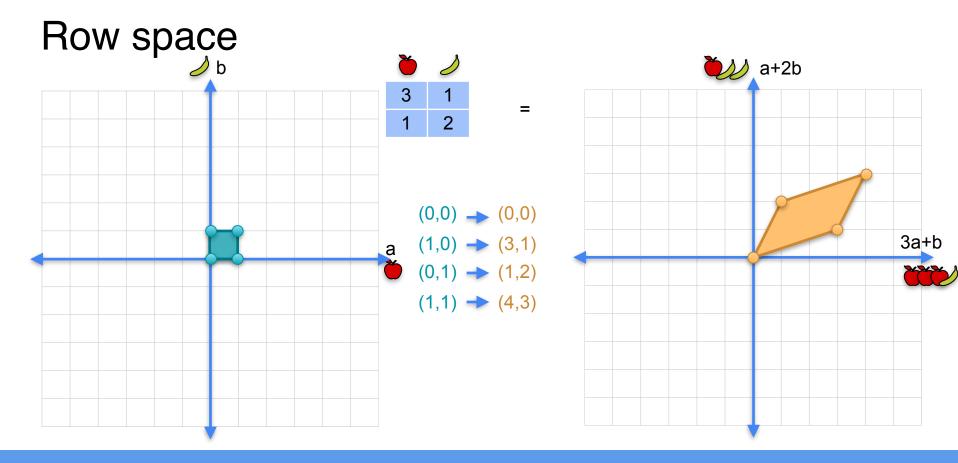


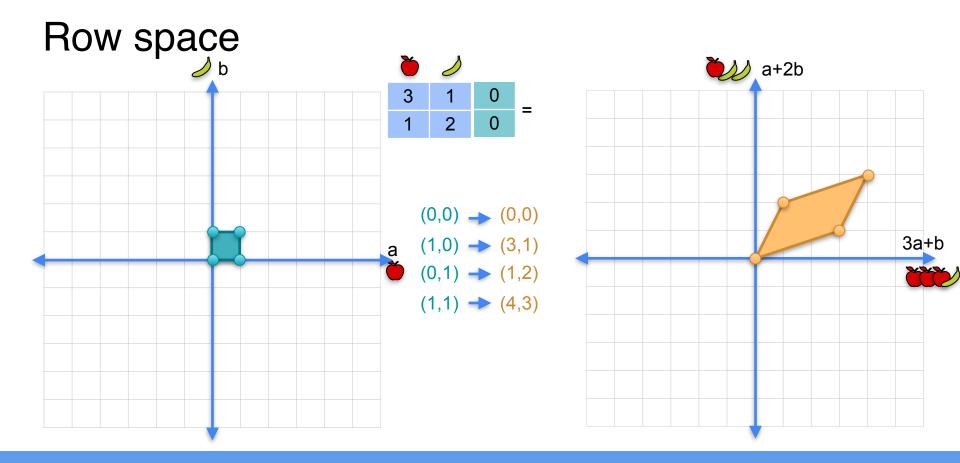
Null space

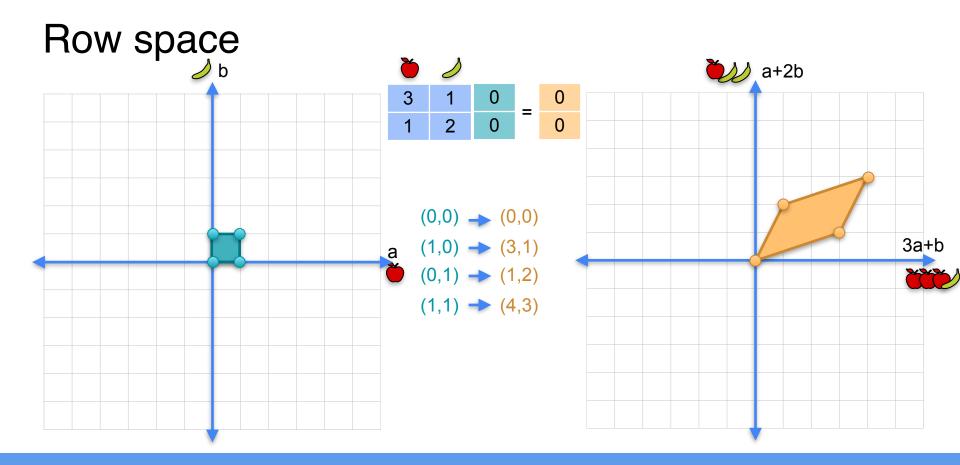


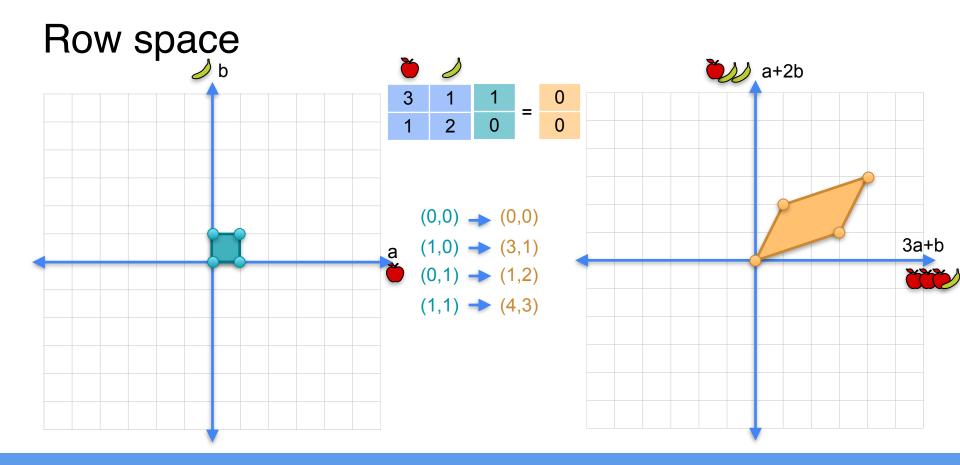
Dot product as an area

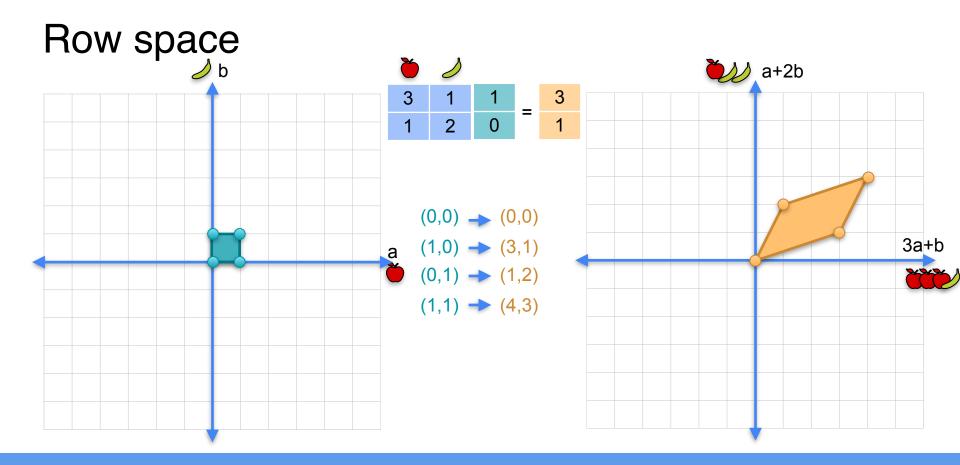


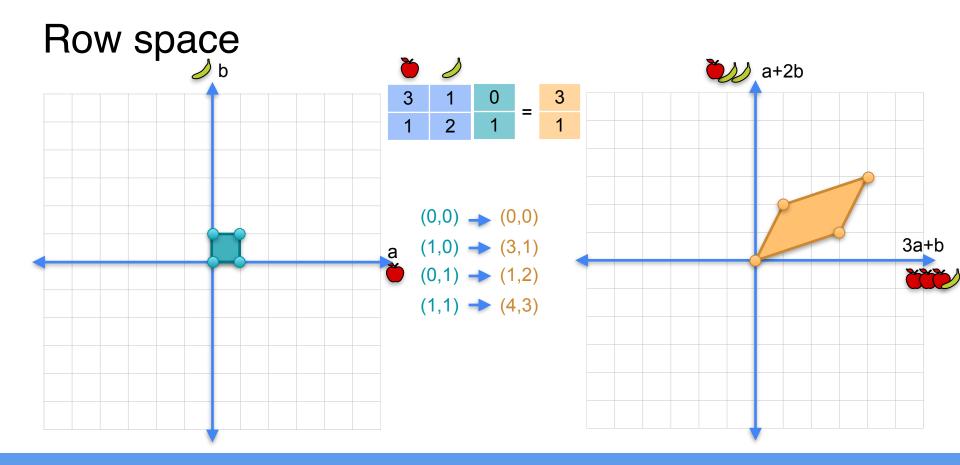


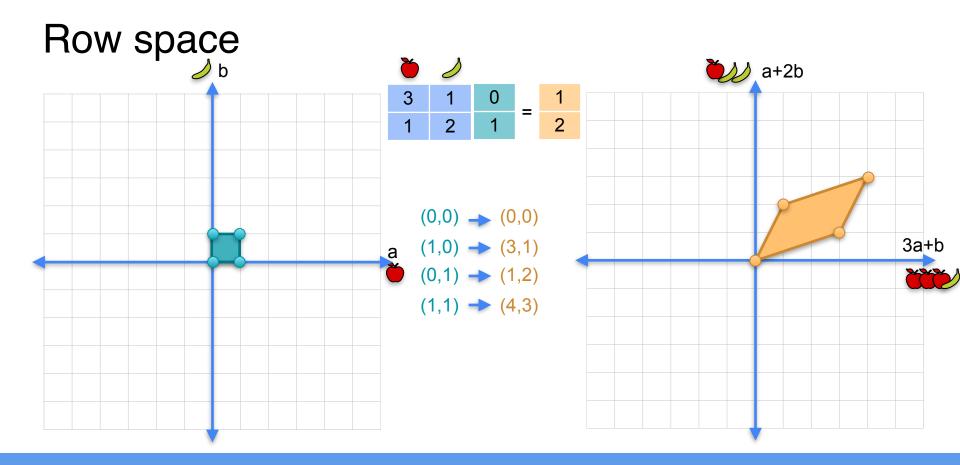


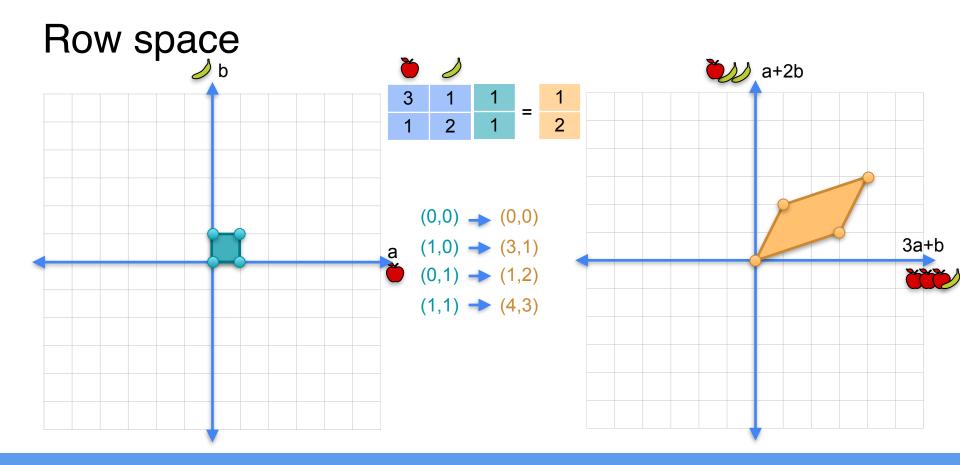


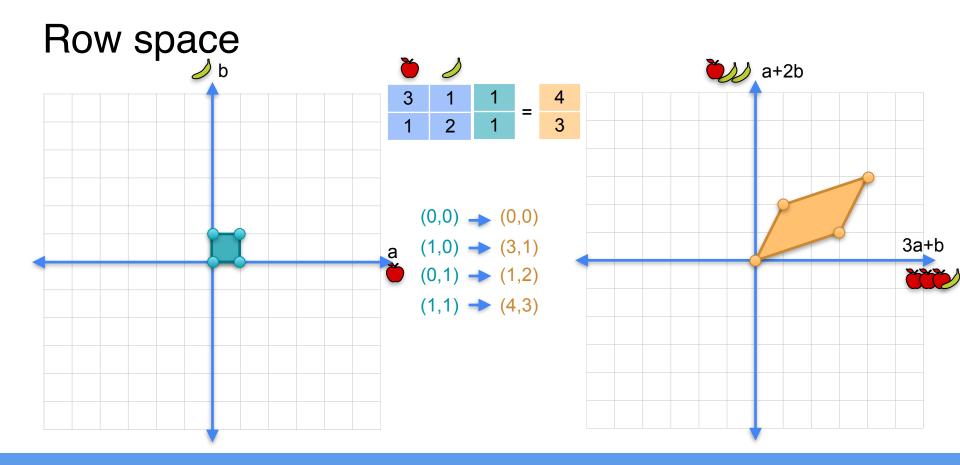


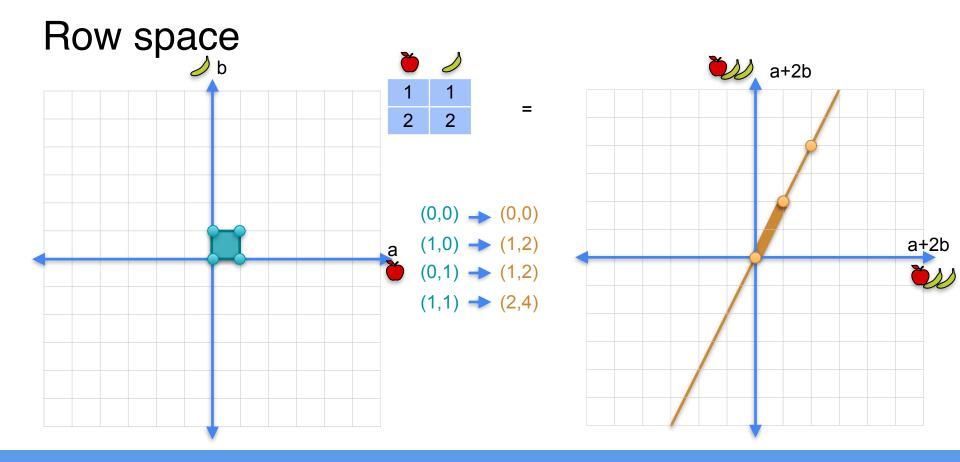


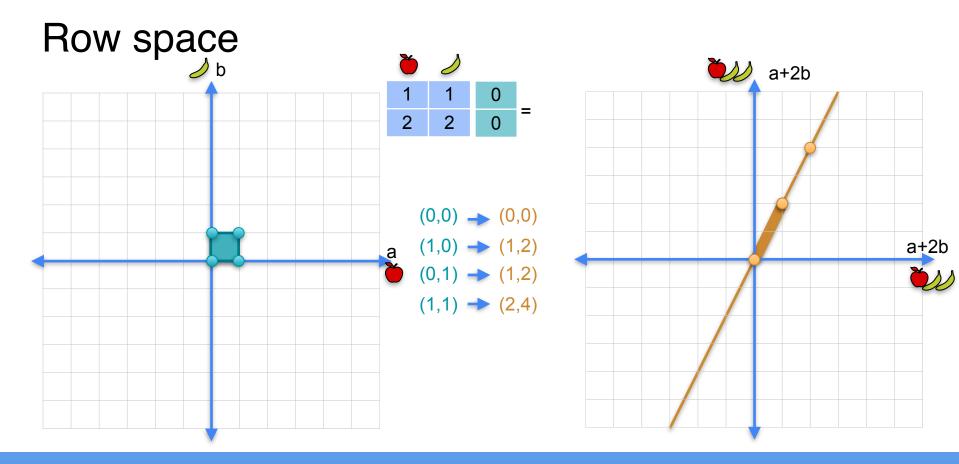


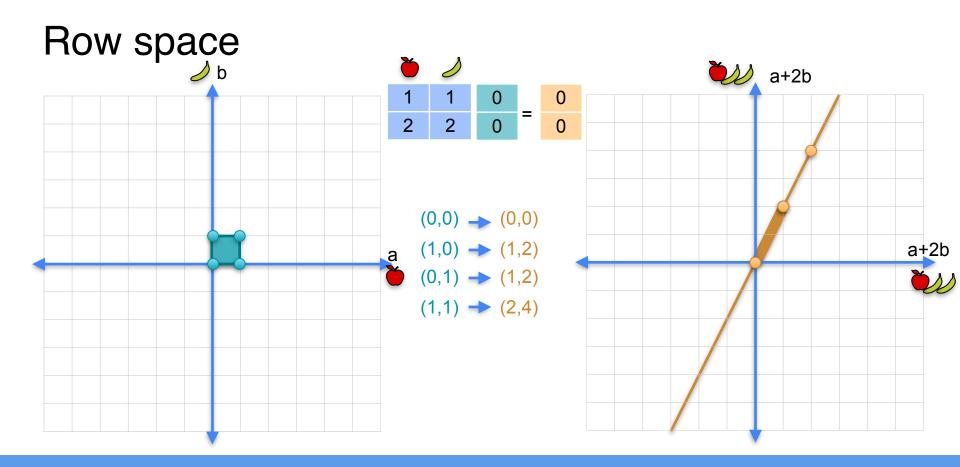


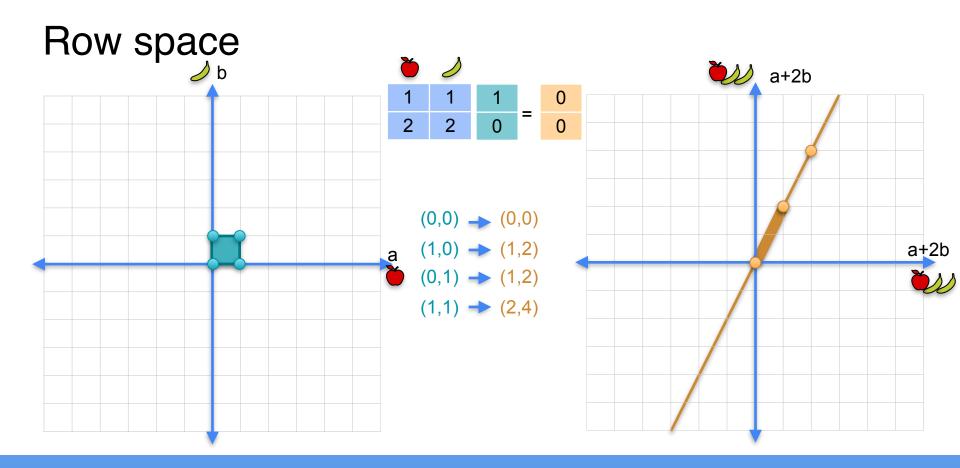


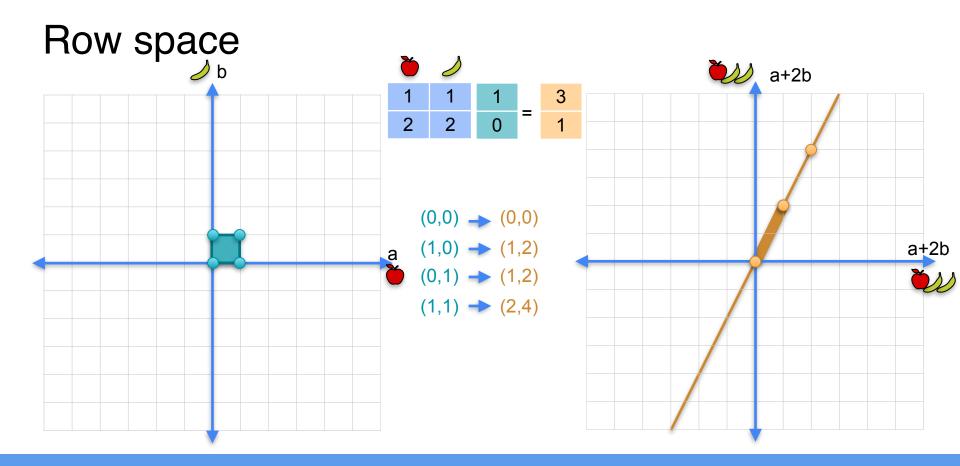


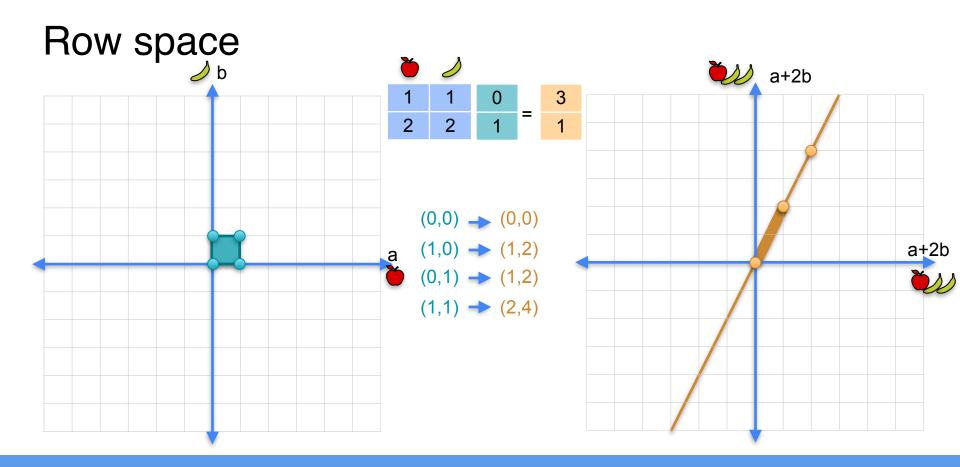


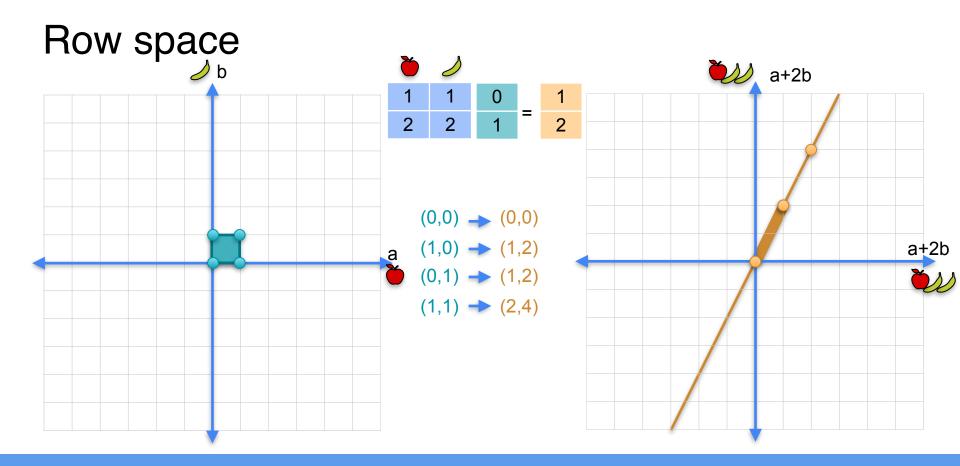


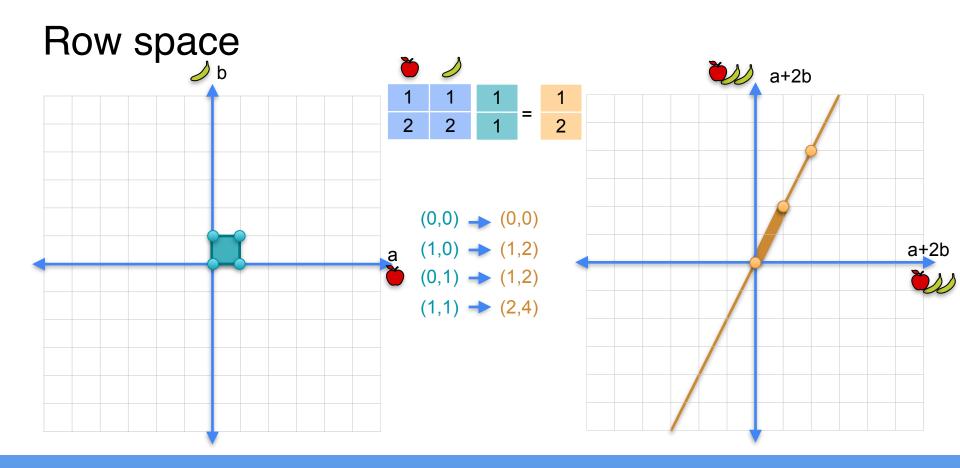


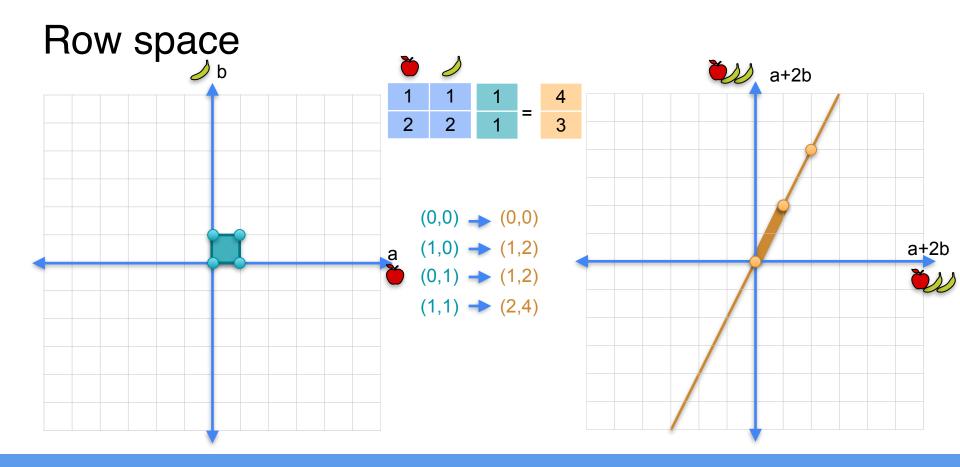


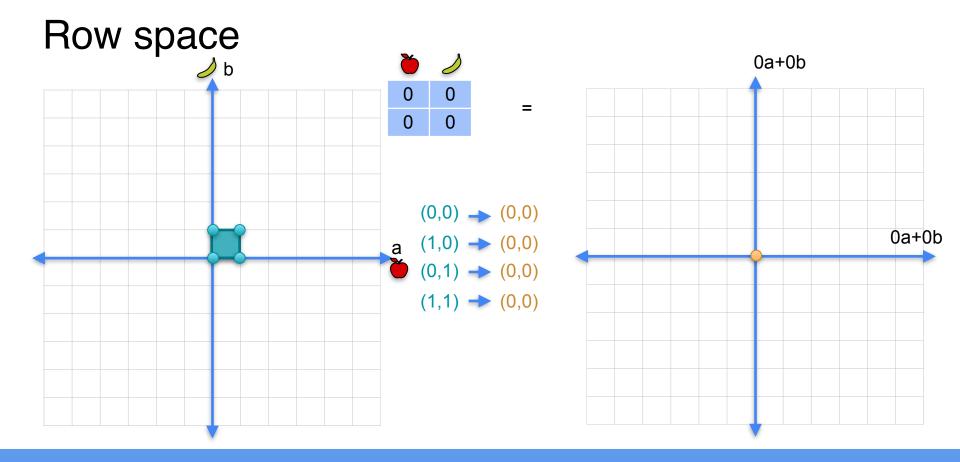


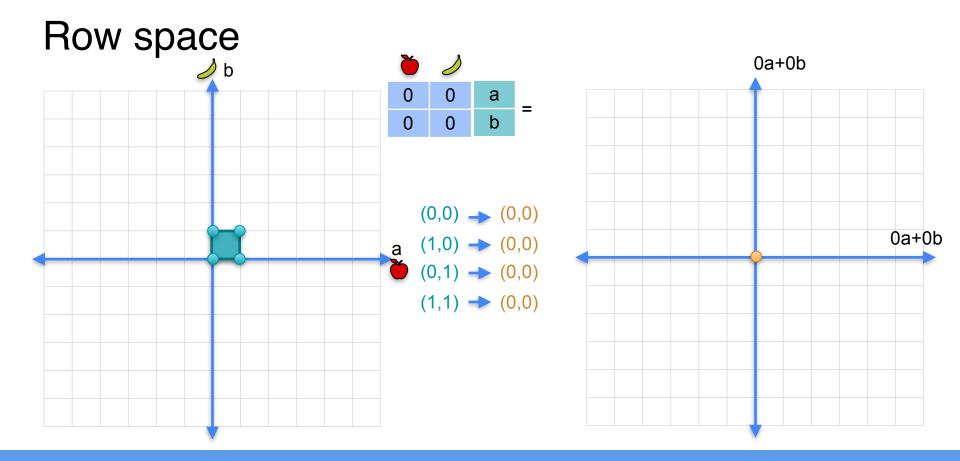


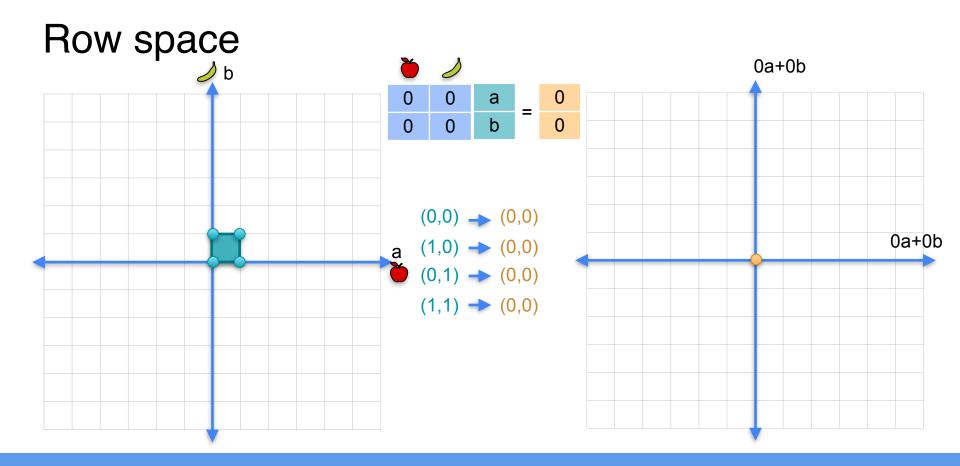




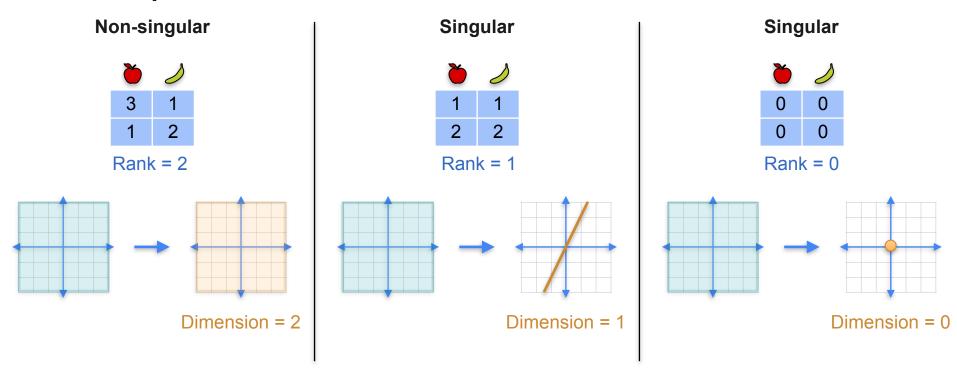




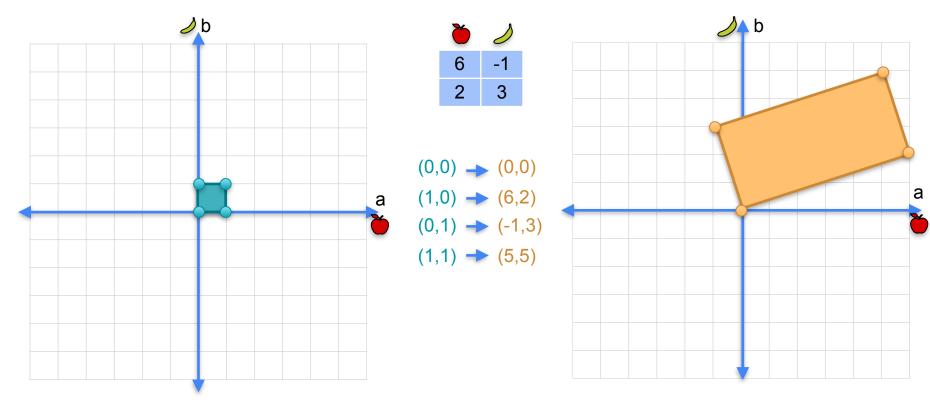




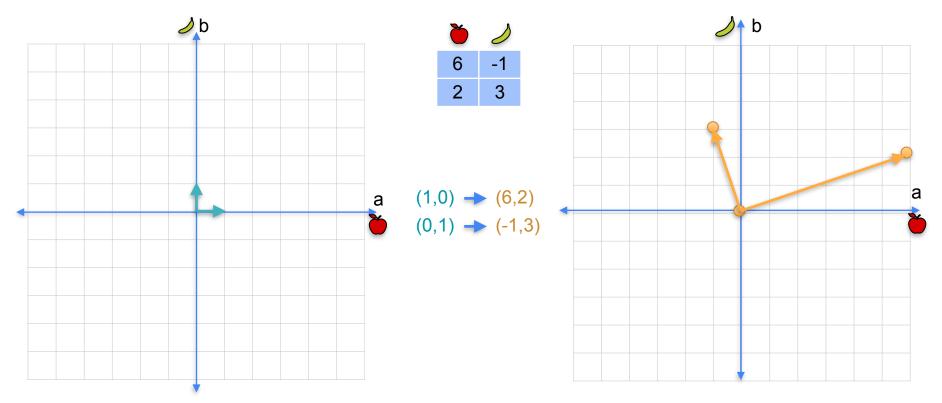
Row space



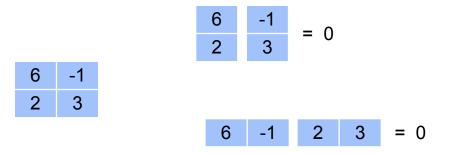
Orthogonal matrix



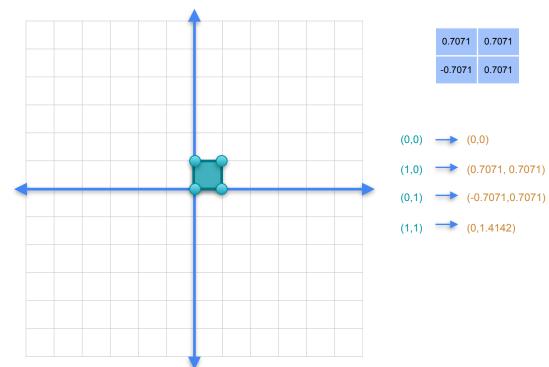
Orthogonal matrix

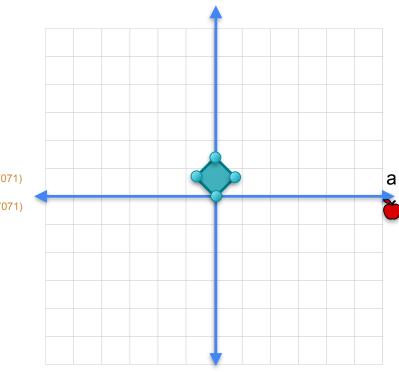


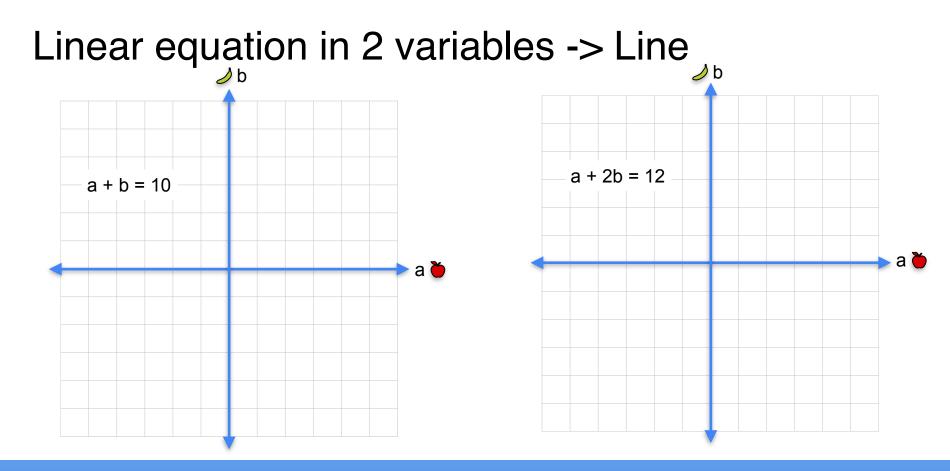
Orthogonal matrices have orthogonal columns

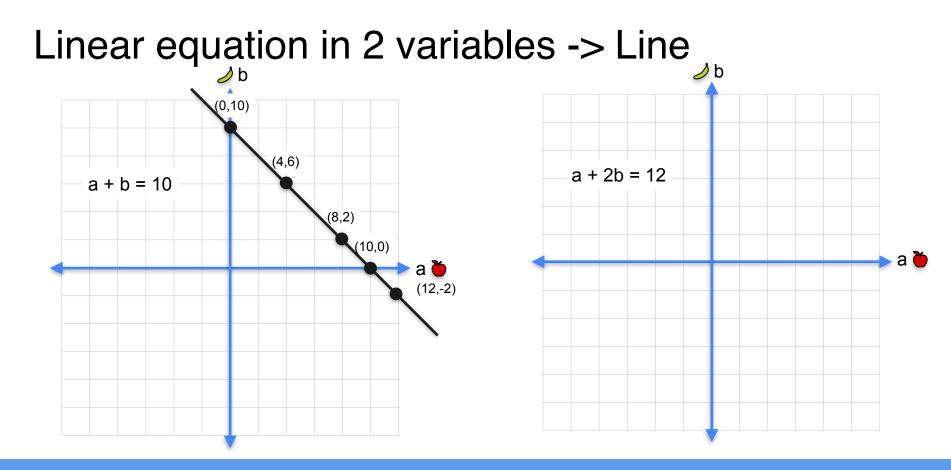


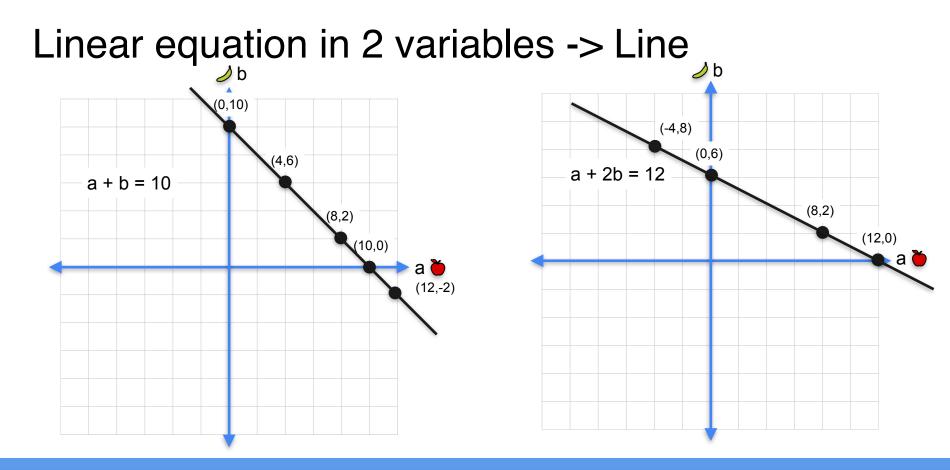
Orthogonal matrix

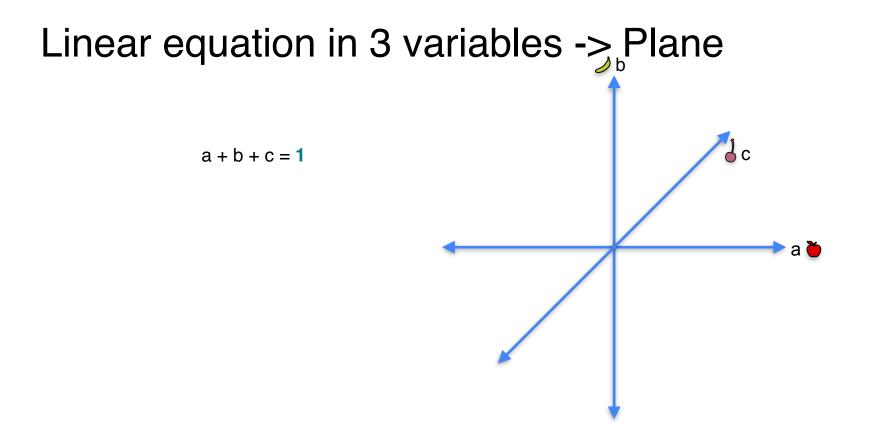


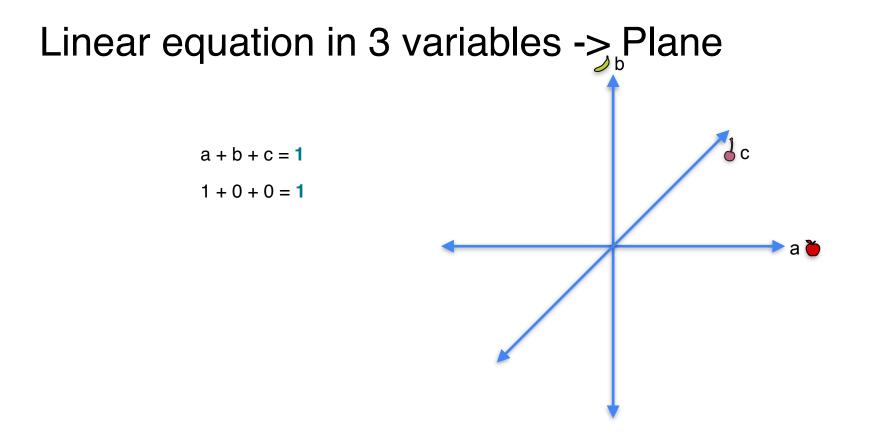




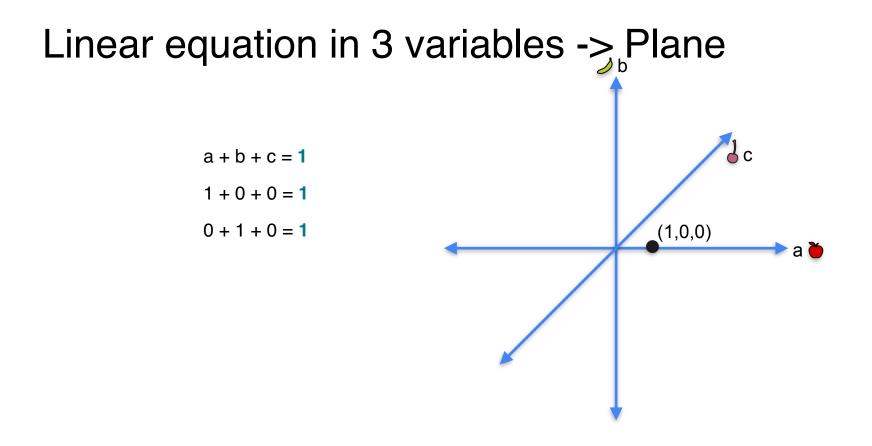


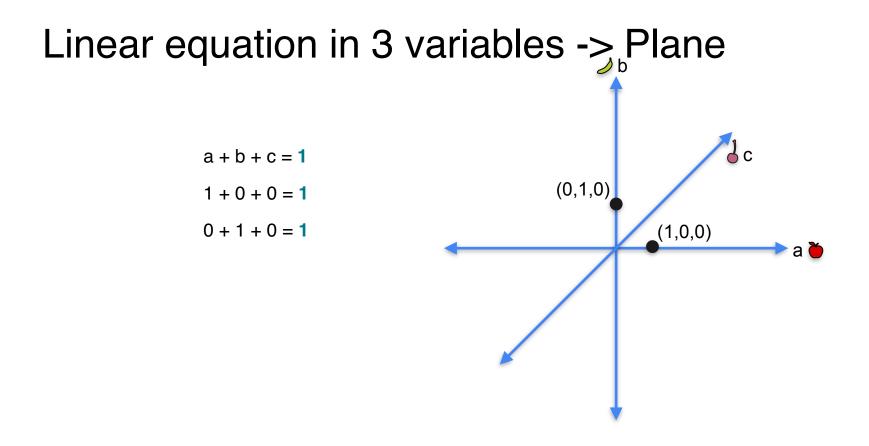


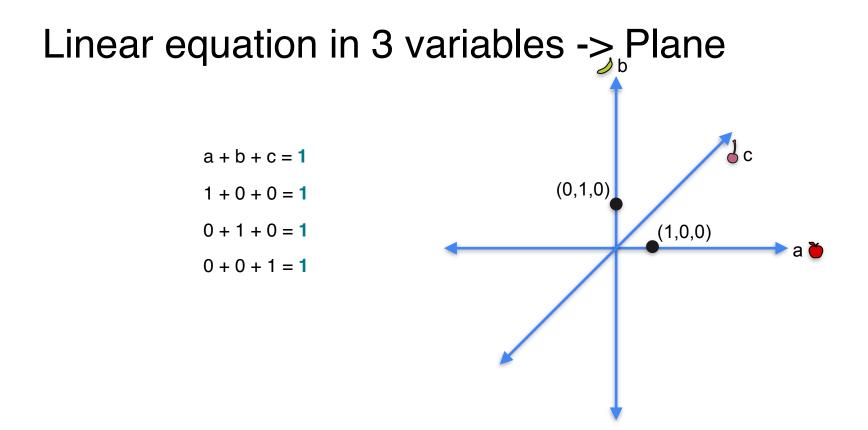


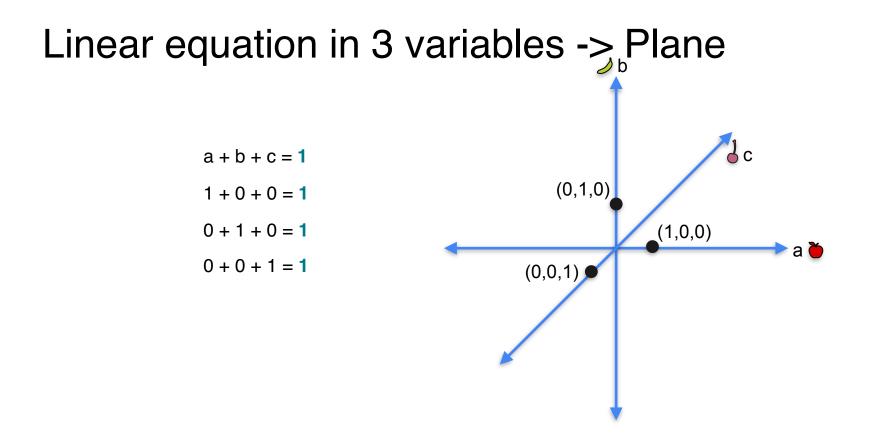


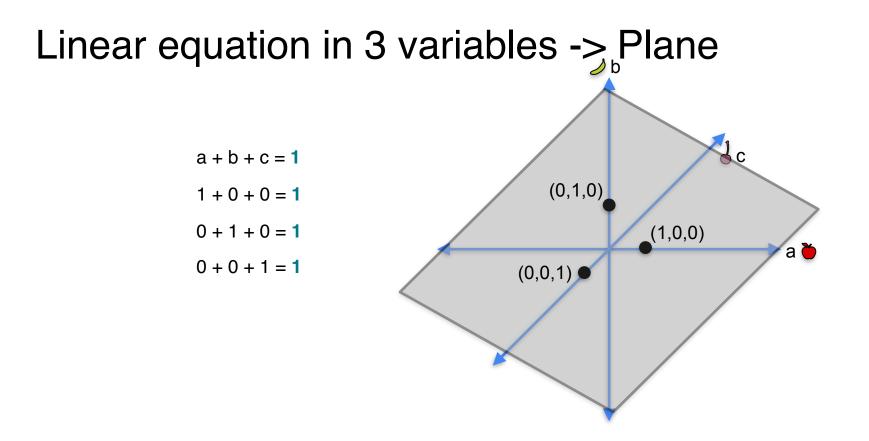


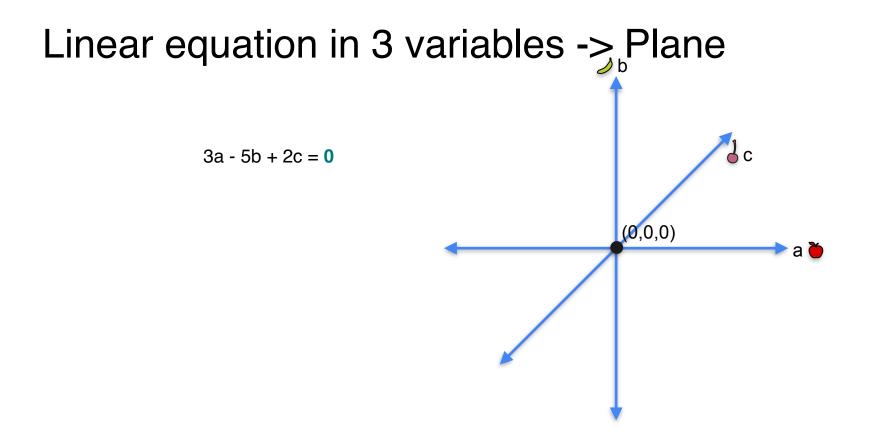


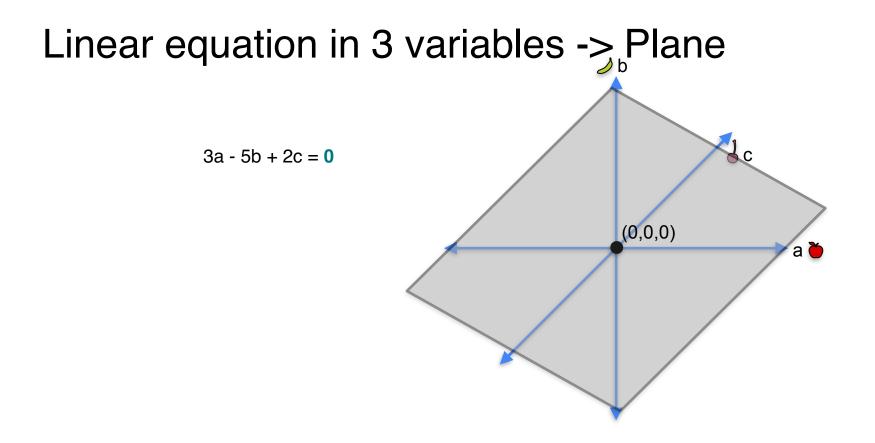


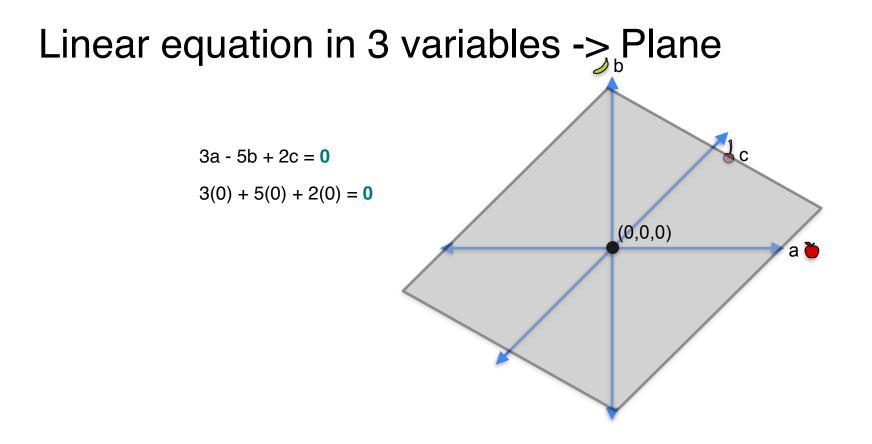






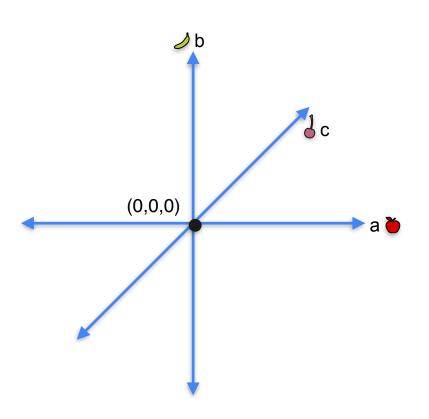


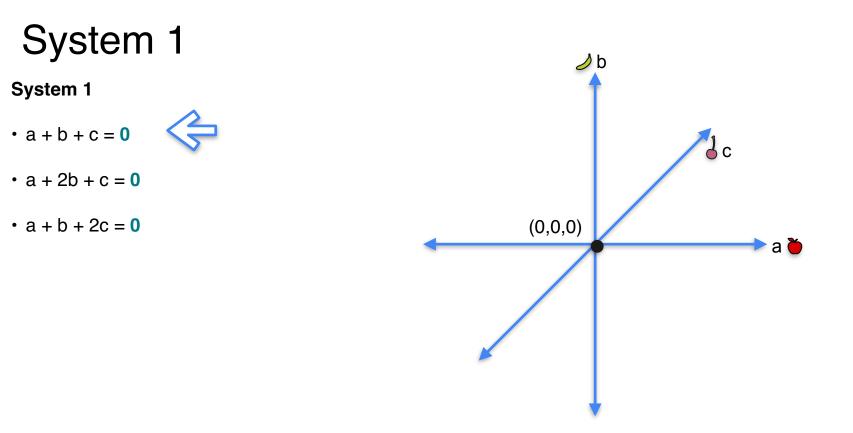




System 1

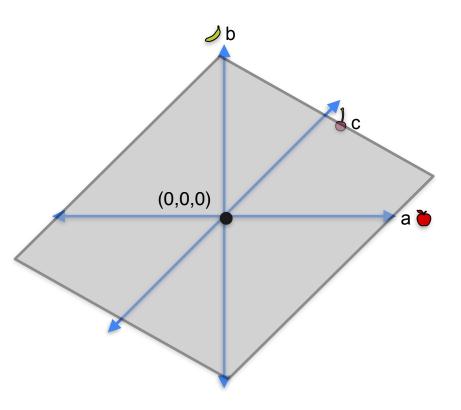
- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0





• a + 2b + c = **0**

• a + b + 2c = 0



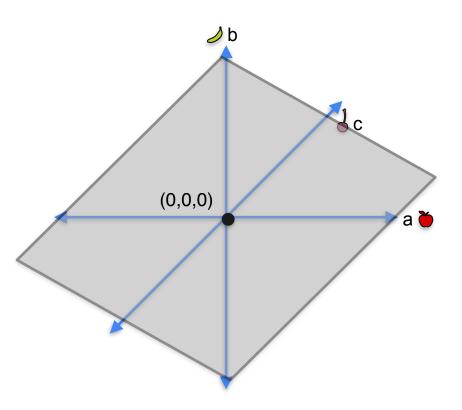
System 1

• a + b + c = 0

• a + 2b + c = **0**

¢

• a + b + 2c = 0



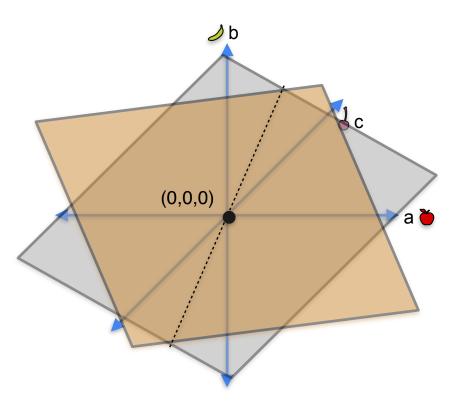
System 1

• a + b + c = 0

• a + 2b + c = **0**

¢

• a + b + 2c = 0

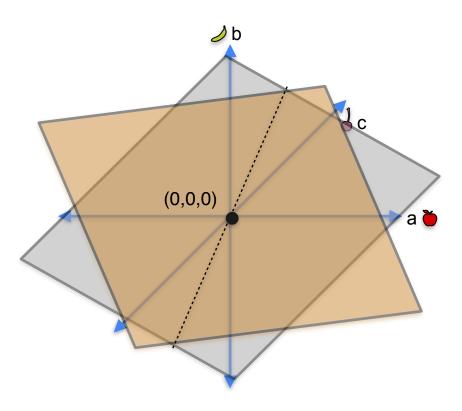


System 1

• a + b + c = 0

• a + 2b + c = 0

• a + b + 2c = **0**

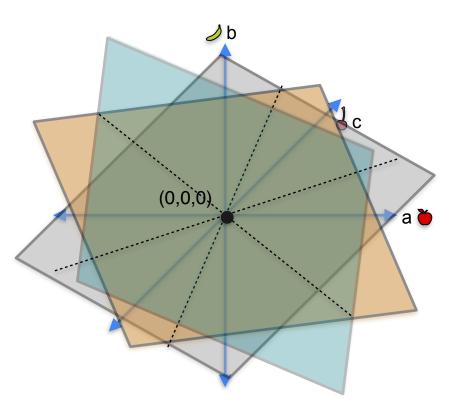


System 1

• a + b + c = 0

• a + 2b + c = 0

• a + b + 2c = **0**

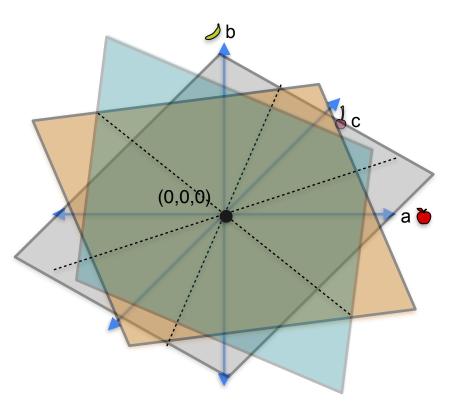


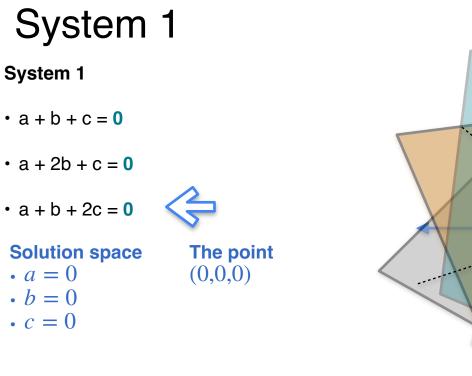
System 1

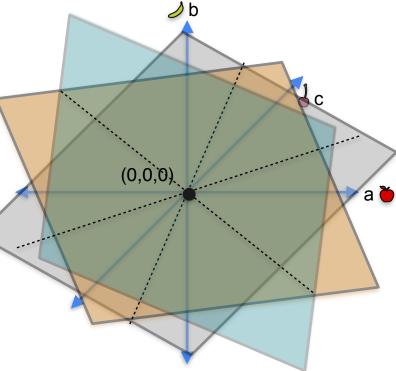
- a + b + c = 0
- a + 2b + c = 0
- a + b + 2c = 0

Solution space

- *a* = 0
- $\cdot b = 0$
- c = 0

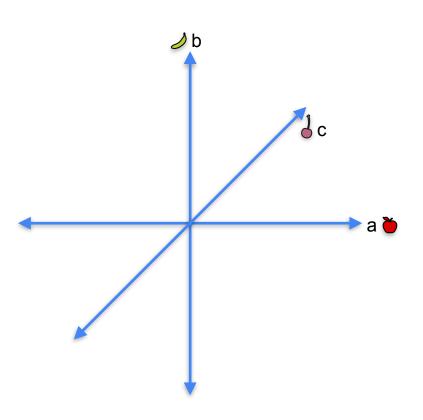


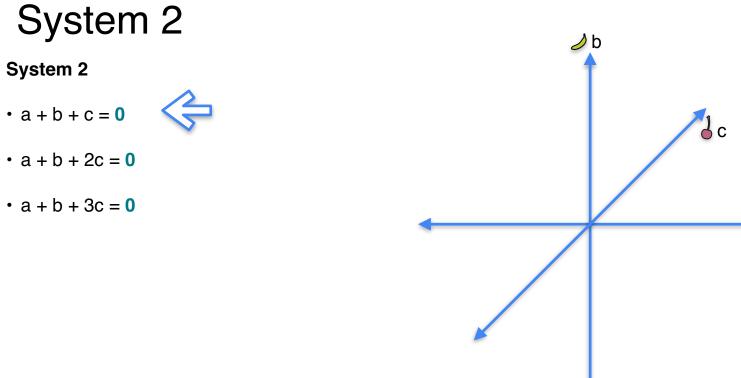


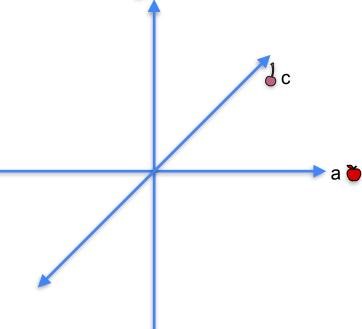


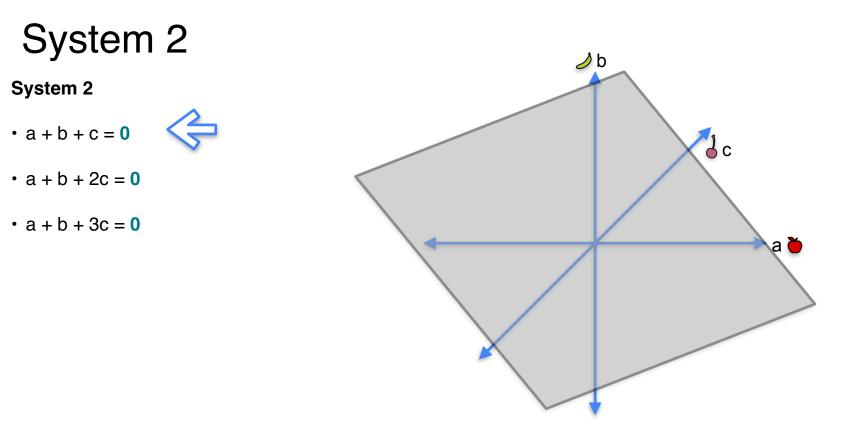
System 2

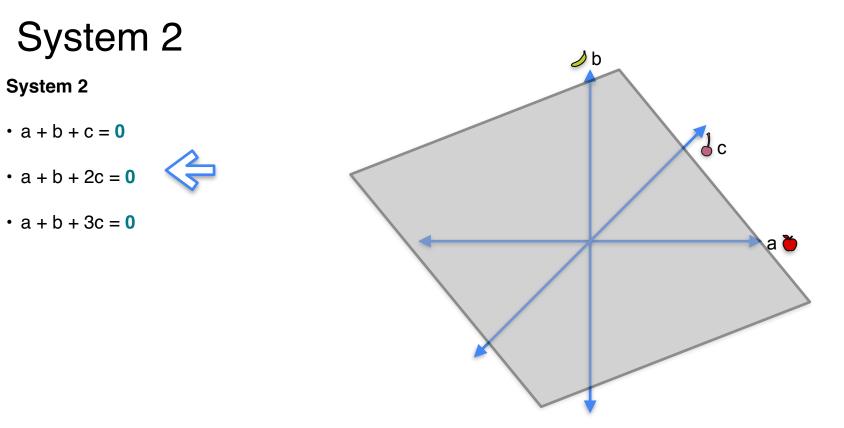
- a + b + c = 0
- a + b + 2c = 0
- a + b + 3c = 0









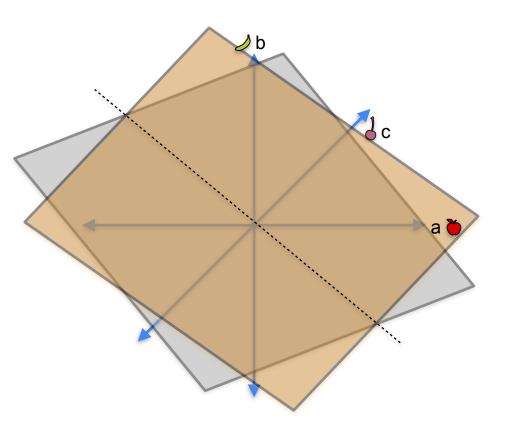


System 2

• a + b + c = 0

• a + b + 2c = **0**

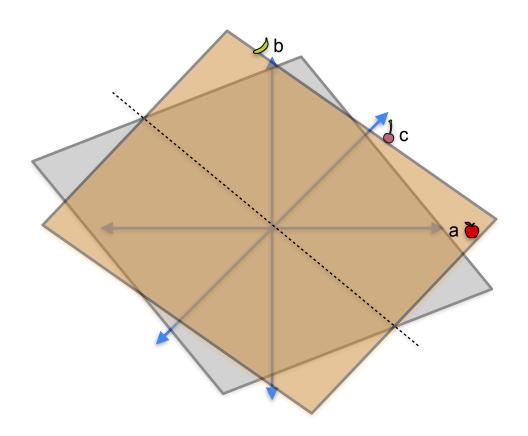
• a + b + 3c = 0



• a + b + c = 0

• a + b + 2c = **0**

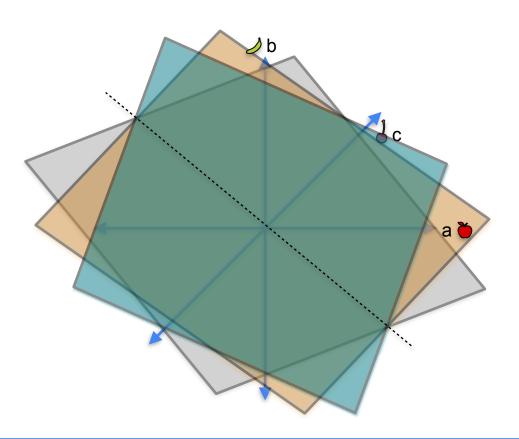
• a + b + 3c = 0



• a + b + c = 0

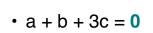
• a + b + 2c = **0**

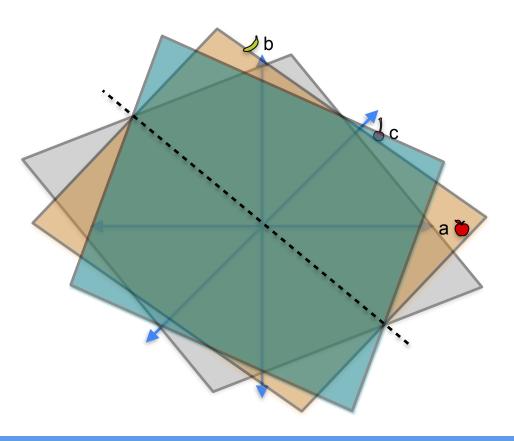
• a + b + 3c = 0



• a + b + c = 0

• a + b + 2c = **0**

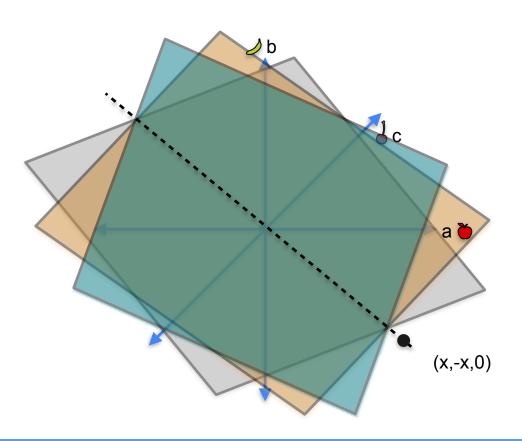




• a + b + c = 0

• a + b + 2c = **0**

• a + b + 3c = 0



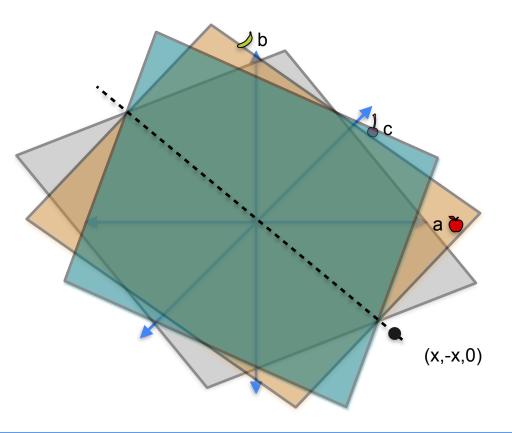
• a + b + c = 0

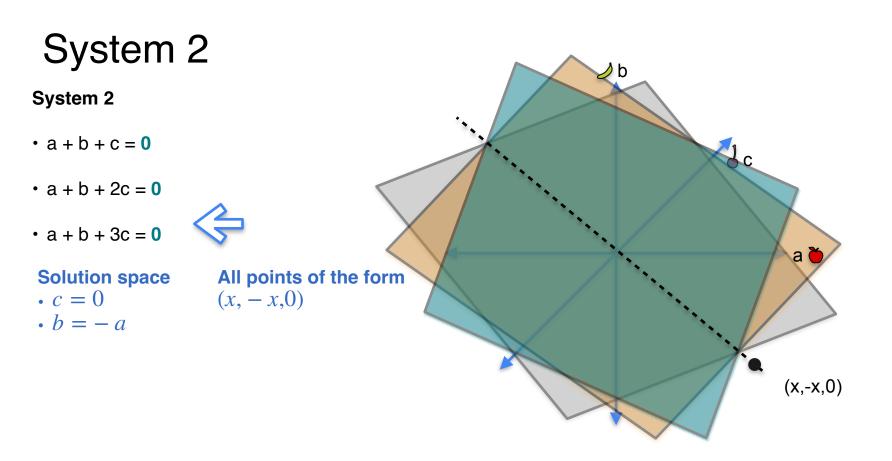
• a + b + 2c = 0

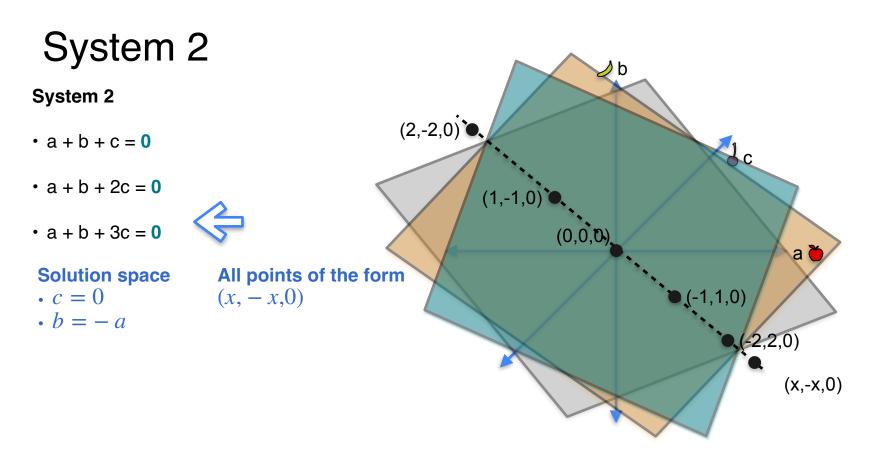
• a + b + 3c = 0

¢

Solution space • c = 0• b = -a

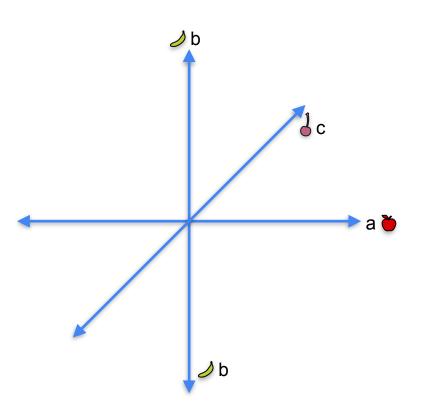




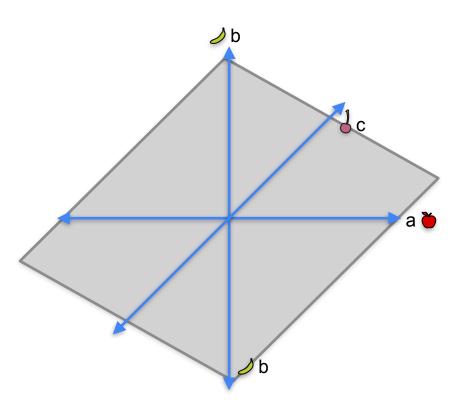


System 3

- a + b + c = 0
- 2a + 2b + 2c = **0**
- 3a + 3b + 3c = 0



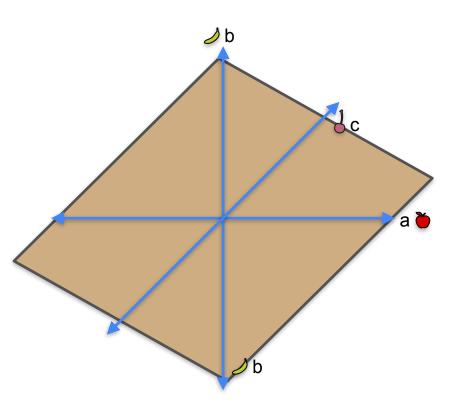
- 2a + 2b + 2c = **0**
- 3a + 3b + 3c = 0



System 3

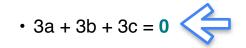
• a + b + c = 0

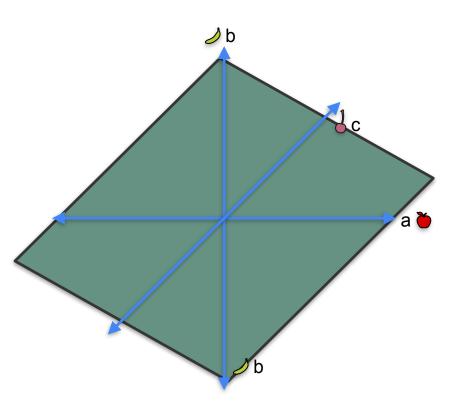
• 3a + 3b + 3c = 0



System 3

- a + b + c = 0
- 2a + 2b + 2c = **0**

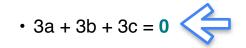


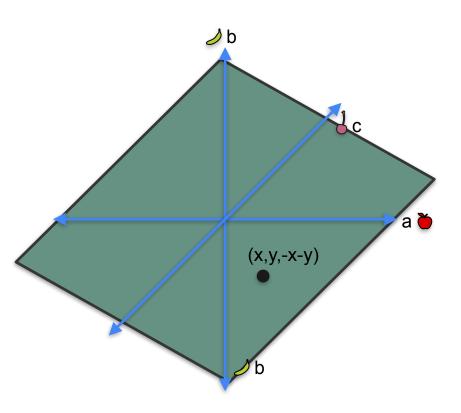


System 3

• a + b + c = 0

• 2a + 2b + 2c = **0**





System 3

- a + b + c = 0
- 2a + 2b + 2c = **0**

Solution space $\cdot a + b + c = 0$

