Copyright Notice

These slides are distributed under the Creative Commons License.
DeepLearning.Al makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite DeepLearning.Al as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Math for Machine Learning

Linear algebra - Week 3

Vectors
Matrices
Dot product
Matrix multiplication
Linear transformations

Vectors and Linear Transformations

DeepLearning.AI

Machine Learning motivation

Neural Networks - Al generated images

Al-generated human faces.

- Generative learning: Generating realistic looking images.

Text-to-image and image-to-text generation

"A Golden Retriever dog wearing a blue
checkered beret and red dotted turtleneck."

©) DeepLearning.AI

Vectors and Linear Transformations

DeepLearning.AI

Vectors and their properties

Vectors

©) DeepLearning.AI

Vectors

(O) DeepLearning.AI

Vectors

©) DeepLearning.AI

Vectors

©) DeepLearning.AI

Vectors

©) DeepLearning.AI

Vectors

©) DeepLearning.AI

How to get from point A to point B ?

How to get from point A to point B ?

How to get from point A to point B ?

How to get from point A to point B ?

(O) DeepLearning.AI

How to get from point A to point B ?

How to get from point A to point B ?

How to get from point A to point B ?

How to get from point A to point B ?

How to get from point A to point B ?

How to get from point A to point B ?

©) DeepLearning.AI

How to get from point A to point B ?

(O) DeepLearning.AI

How to get from point A to point B ?

Pythagorean Theorem

Norms

(O) DeepLearning.AI

Norms

©) DeepLearning.AI

Norms

(O) DeepLearning.AI

Norm of a vector

©) DeepLearning.AI

Norm of a vector

©) DeepLearning.AI

Norm of a vector

$$
\sqrt{4^{2}+3^{2}}=\sqrt{25}=5
$$

Direction of a vector

©) DeepLearning.AI

Direction of a vector

© DeepLearning.AI

Direction of a vector

$$
\tan (\theta)=\frac{3}{4}
$$

Direction of a vector

$$
\begin{aligned}
& \tan (\theta)=\frac{3}{4} \\
& \theta=\arctan (3 / 4)=0.64
\end{aligned}
$$

Direction of a vector

$$
\begin{aligned}
& \tan (\theta)=\frac{3}{4} \\
& \theta=\arctan (3 / 4)=0.64=36.87^{\circ}
\end{aligned}
$$

Vectors and Linear Transformations

DeepLearning.AI

Sum and difference of vectors

Sum of vectors

©) DeepLearning.AI

Sum of vectors

©) DeepLearning.AI

Sum of vectors

Sum of vectors

$$
u+v=(4+1,1+3)=(5,4)
$$

Sum of vectors

$$
u+v=(4+1,1+3)=(5,4)
$$

Sum of vectors

$$
u+v=(4+1,1+3)=(5,4)
$$

Difference of vectors

©) DeepLearning.AI

Difference of vectors

$$
u-v=(4-1,1-3)=(3,-2)
$$

Vectors and Linear Transformations

DeepLearning.AI

Distance between vectors

Distances

©) DeepLearning.AI

Distances

©) DeepLearning.AI

Distances

$$
\text { L1-distance }|u-v|_{1}=|5|+|-3|=8
$$

©) DeepLearning.AI

Distances

$$
\begin{aligned}
& \text { L1-distance }|u-v|_{1}=|5|+|-3|=8 \\
& \underbrace{\mathbb{S}}|u-v|_{2}=\sqrt{5^{2}+3^{2}}=5.83 \\
& \text { L2-distance }
\end{aligned}
$$

Distances

$$
\underset{\text { L1-distance }}{ }|u-v|_{1}=|5|+|-3|=8
$$

$$
\underbrace{\mathbb{G}}_{\text {L2-distance }}|u-v|_{2}=\sqrt{5^{2}+3^{2}}=5.83
$$

Distances

$$
\underset{\text { L1-distance }}{ }|u-v|_{1}=|5|+|-3|=8
$$

$$
\underbrace{\mathbb{G}}_{\text {L2-distance }}|u-v|_{2}=\sqrt{5^{2}+3^{2}}=5.83
$$

Distances

$$
\underset{\text { L1-distance }}{ }|u-v|_{1}=|5|+|-3|=8
$$

$$
\underbrace{\mathbb{G}}_{\text {L2-distance }}|u-v|_{2}=\sqrt{5^{2}+3^{2}}=5.83
$$

Distances

$$
\begin{aligned}
& \text { L1-distance }|u-v|_{1}=|5|+|-3|=8 \\
& \underbrace{C}_{\text {L2-distance }}|u-v|_{2}=\sqrt{5^{2}+3^{2}}=5.83
\end{aligned}
$$

$\rightarrow \cos (\theta)$
Cosine distance

Vectors and Linear Transformations

DeepLearning.AI

Multiplying a vector by a scalar

$$
u=(1,2)
$$

© DeepLearning.AI

Multiplying a vector by a scalar

$$
\begin{aligned}
u & =(1,2) \\
\lambda & =3
\end{aligned}
$$

Multiplying a vector by a scalar

$$
\begin{aligned}
& u=(1,2) \\
& \lambda=3 \\
& \lambda u=(3,6)
\end{aligned}
$$

Multiplying a vector by a scalar

$$
\begin{aligned}
& u=(1,2) \\
& \lambda=3 \\
& \lambda u=(3,6)
\end{aligned}
$$

If the scalar is negative

If the scalar is negative

$$
u=(1,2)
$$

If the scalar is negative

$$
\begin{aligned}
u & =(1,2) \\
\lambda & =-2
\end{aligned}
$$

If the scalar is negative

$$
\begin{aligned}
& u=(1,2) \\
& \lambda=-2 \\
& \lambda u=(-2,-4)
\end{aligned}
$$

If the scalar is negative

$$
\begin{aligned}
& u=(1,2) \\
& \lambda=-2 \\
& \lambda u=(-2,-4)
\end{aligned}
$$

If the scalar is negative

$$
\begin{aligned}
& u=(1,2) \\
& \lambda=-2 \\
& \lambda u=(-2,-4)
\end{aligned}
$$

Vectors and Linear Transformations

DeepLearning.AI

The dot product

A shortcut for linear operations

A shortcut for linear operations

Quantities
2 apples
4 bananas
1 cherry

A shortcut for linear operations

Quantities
2 apples
4 bananas
1 cherry

Prices
apples: \$3
bananas: \$5
cherries: \$2

A shortcut for linear operations

Quantities
2 apples
4 bananas
1 cherry

Prices
apples: \$3
bananas: \$5
cherries: \$2
Total price

(O) DeepLearning.AI

A shortcut for linear operations

Prices
apples: \$3
bananas: \$5
cherries: \$2

Total price
© DeepLearning.AI

A shortcut for linear operations

Prices
apples: \$3
bananas: \$5
cherries: \$2
\(\begin{array}{ll}\$ 8 \& 3
\$ 0 \& 5
\$ \& d\end{array}\)

Total price
(O) DeepLearning.AI

A shortcut for linear operations

A shortcut for linear operations

A shortcut for linear operations

Prices
apples: \$3
bananas: \$5
cherries: \$2

Total price

A shortcut for linear operations

Prices
apples: \$3
bananas: \$5
cherries: \$2

$$
6+20+2=28
$$

A shortcut for linear operations

Prices
 apples: \$3
 bananas: \$5
 cherries: \$2

$6+20+2=28$

The dot product

$$
\left.\begin{array}{rlll}
28 & 2 & \$ 8 & 3 \\
2 \$ 2 & 4 \\
d & 1
\end{array} \quad \begin{array}{l}
\$ \delta \\
5 \\
\$
\end{array}\right]=\$ 28
$$

The dot product

$$
2 \cdot 3+4 \cdot 5+1 \cdot 2=28
$$

The dot product

$$
2 \cdot 3+4 \cdot 5+1 \cdot 2=28
$$

The dot product

$$
2 \cdot 3+4 \cdot 5+1 \cdot 2=28
$$

Norm of a vector using dot product

Norm of a vector using dot product

Norm of a vector using dot product

$$
\sqrt{4^{2}+3^{2}}=\sqrt{25}=5
$$

Norm of a vector using dot product

$$
\begin{aligned}
& \sqrt{4^{2}+3^{2}}=\sqrt{25}=5 \\
& \begin{array}{l|l|l}
4 \\
4 & 3 & 3
\end{array}=25
\end{aligned}
$$

Norm of a vector using dot product

$$
\begin{array}{r}
\sqrt{4^{2}+3^{2}}=\sqrt{25}=5 \\
43_{3}=25 \\
L 2-\text { norm }=\sqrt{\text { dot } \operatorname{product}(u, u)}
\end{array}
$$

Norm of a vector using dot product

$$
\begin{gathered}
\sqrt{4^{2}+3^{2}}=\sqrt{25}=5 \\
43_{3}=25 \\
L 2-\text { norm }=\sqrt{\text { dot product }(u, u)} \\
|u|_{2}=\sqrt{\langle u, u\rangle}
\end{gathered}
$$

Vectors and Linear Transformations

DeepLearning.AI

Geometric dot product

Orthogonal vectors have dot product 0

Orthogonal vectors have dot product 0

Orthogonal vectors have dot product 0

$$
\begin{array}{|c|c|c|}
\hline 6 & 2 & -1 \\
\hline
\end{array}
$$

Orthogonal vectors have dot product 0

$$
\begin{array}{c|c|c|}
\hline 6 & 2 & -1 \\
3
\end{array}=0
$$

Orthogonal vectors have dot product 0

$$
\begin{gathered}
6 \quad 2 \frac{-1}{3}=0 \\
\langle u, v\rangle=0
\end{gathered}
$$

The dot product

The dot product

The dot product

$$
\langle u, u\rangle=|u|^{2}
$$

The dot product

$$
\langle u, u\rangle=|u|^{2}
$$

The dot product

$$
\begin{aligned}
& \langle u, u\rangle=|u|^{2} \\
& \langle u, v\rangle=0
\end{aligned}
$$

The dot product

$$
\begin{aligned}
& \langle u, u\rangle=|u|^{2} \\
& \langle u, v\rangle=0
\end{aligned}
$$

The dot product

$$
\begin{aligned}
& \langle u, u\rangle=|u|^{2} \\
& \langle u, v\rangle=0 \\
& \langle u, v\rangle=?
\end{aligned}
$$

The dot product

The dot product

The dot product

$$
\langle u, u\rangle=|u|^{2}=|u| \cdot|u|
$$

The dot product

$$
\langle u, u\rangle=|u|^{2}=|u| \cdot|u|
$$

The dot product

$$
\langle u, u\rangle=|u|^{2}=|u| \cdot|u|
$$

The dot product

$$
\begin{aligned}
& \langle u, u\rangle=|u|^{2}=|u| \cdot|u| \\
& \langle u, v\rangle=|u| \cdot|v|
\end{aligned}
$$

The dot product

$$
\begin{aligned}
\langle u, u\rangle & =|u|^{2}=|u| \cdot|u| \\
\langle u, v\rangle & =|u| \cdot|v| \\
\langle u, v\rangle & =\left|u^{\prime}\right| \cdot|v| \\
& =|u||v| \cos (\theta)
\end{aligned}
$$

Geometric dot product

Geometric dot product

©) DeepLearning.AI

Geometric dot product

$$
\begin{array}{l|l|l}
6 & 2 & -1 \\
3
\end{array}=0
$$

Geometric dot product

©) DeepLearning.AI

Geometric dot product

©) DeepLearning.AI

Geometric dot product

Geometric dot product

Geometric dot product

© DeepLearning.AI

Geometric dot product

$$
\begin{aligned}
& \begin{array}{l|l|l|l}
\hline 6 & 2 & 2 \\
\hline
\end{array}=20 \quad \text { Positive } \\
& \begin{array}{l|l|l|}
\hline 6 & 2 & -1 \\
\hline
\end{array} \\
& \begin{array}{l|l}
3 & -4 \\
6 & 2
\end{array} \frac{1}{}=-22
\end{aligned}
$$

Geometric dot product

©) DeepLearning.AI

Geometric dot product

© DeepLearning.AI

Geometric dot product

$$
\langle u, v\rangle=0
$$

Geometric dot product

Dot product with $u>0$

$$
\langle u, v\rangle>0
$$

$$
\langle u, v\rangle=0
$$

Geometric dot product

Vectors and Linear Transformations

DeepLearning.AI

Multiplying a matrix by a vector

Equations as dot product

$$
\begin{aligned}
& 2 a+4 b+c=28 \\
& \text { 童d } \\
& \begin{array}{l|l}
\$ 0 & a \\
\$ 才 & b \\
\$ d & c
\end{array}=\$ 28
\end{aligned}
$$

Equations as dot product

$$
\begin{array}{l|l|l}
a+b+c=10 & a+2 b+c=15 & a+b+2 c=12
\end{array}
$$

Equations as dot product

$a+b+c=10$			$a+2 b+c=15$	$a+b+2 c=12$
\%	θ			
1	1	1		

Equations as dot product

Equations as dot product

$$
a+b+c=10
$$
$$
a+2 b+c=15
$$
$$
a+b+2 c=12
$$

$$
\begin{array}{ll}
\$ \% & a \\
\$ & \\
\$ & b \\
\$ & c
\end{array}=\$ 10
$$

$$
\begin{array}{lllll}
8 & \& & d & \$ 8 & a \\
1 & 2 & 1 & \$ & d \\
\\
& & & \$ & b \\
& & c
\end{array}=\$ 15
$$

$$
\begin{array}{ccccc}
0 & d & d & \$ & a \\
1 & 1 & 2 & \$ d & b \\
& & \$ & d & c
\end{array}=\$ 12
$$

Equations as dot product

Equations as dot product

System of equations

$$
\begin{aligned}
& a+b+c=10 \\
& a+2 b+c=15 \\
& a+b+2 c=12
\end{aligned}
$$

Matrix product

Equations as dot product

System of equations
Matrix product

$$
\begin{aligned}
& a+b+c=10 \\
& a+2 b+c=15 \\
& a+b+2 c=12
\end{aligned}
$$

1	1	1	a		
1	2	1	b		
1	1	2	c	$=$	10
:---					

Vectors and Linear Transformations

DeepLearning.AI

Matrices as linear transformations

Matrices as linear transformations

	O
	1
1	2

Matrices as linear transformations

©) DeepLearning.AI

Matrices as linear transformations

© DeepLearning.AI

Matrices as linear transformations

© DeepLearning.AI

Matrices as linear transformations

© DeepLearning.AI

Matrices as linear transformations

Matrices as linear transformations

© DeepLearning.AI

Matrices as linear transformations

©) DeepLearning.AI

Matrices as linear transformations

(O) DeepLearning.AI

Matrices as linear transformations

© DeepLearning.AI

Matrices as linear transformations

(O) DeepLearning.AI

Matrices as linear transformations

© DeepLearning.AI

Matrices as linear transformations

© DeepLearning.AI

Matrices as linear transformations

Matrices as linear transformations

© DeepLearning.AI

Systems of equations as linear transformations

Systems of equations as linear transformations

[^0]
Systems of equations as linear transformations

[^1]
Systems of equations as linear transformations

[^2]
Systems of equations as linear transformations

[^3]
Systems of equations as linear transformations

[^4]
Systems of equations as linear transformations

[^5]
Systems of equations as linear transformations

[^6]
Systems of equations as linear transformations

[^7]
Vectors and Linear Transformations

DeepLearning.AI

Linear transformations as matrices

Linear transformations as matrices

©) DeepLearning.AI

Linear transformations as matrices

© DeepLearning.AI

Linear transformations as matrices

© DeepLearning.AI

Linear transformations as matrices

©) DeepLearning.AI

Linear transformations as matrices

©) DeepLearning.AI

Linear transformations as matrices

© DeepLearning.AI

Linear transformations as matrices

© DeepLearning.AI

Linear transformations as matrices

(O) DeepLearning.AI

Linear transformations as matrices

(O) DeepLearning.AI

Linear transformations as matrices

[^8]
Linear transformations as matrices

[^9]
Linear transformations as matrices

[^10]
Linear transformations as matrices

(O) DeepLearning.AI

Linear transformations as matrices

©) DeepLearning.AI

Vectors and Linear Transformations

DeepLearning.AI

Matrix multiplication

Combining linear transformations

Combining linear transformations

Combining linear transformations

Combining linear transformations

$$
\begin{array}{l|l|l}
\hline 3 & 1 & 1 \\
\hline 1 & 2 & 0
\end{array}=\begin{aligned}
& 3 \\
& \hline
\end{aligned}
$$

Combining linear transformations

Combining linear transformations

Combining linear transformations

Combining linear transformations

3	1	1		
1	2	0	$=$	3
:---				

Combining linear transformations

3	1	1		
1	2	0	$=$	3
:---				

Combining linear transformations

Combining linear transformations

Combining linear transformations

$$
\begin{array}{|c|c|c}
\hline 2 & -1 & 3 \\
\hline 0 & 2 & 1
\end{array}=\begin{aligned}
& 5 \\
& \hline 2 \\
& \hline
\end{aligned}
$$

Combining linear transformations

$$
\begin{array}{|c|c|c|}
\hline 2 & -1 & 3 \\
\hline 0 & 2 & 1
\end{array}=\begin{aligned}
& 5 \\
& \hline 2 \\
& \hline
\end{aligned}
$$

Combining linear transformations

$$
\begin{array}{|c|c|c|}
\hline 2 & -1 & 3 \\
\hline 0 & 2 & 1
\end{array}=\begin{aligned}
& 5 \\
& \hline 2 \\
& \hline
\end{aligned}
$$

Combining linear transformations

2	-1	3		
0	2	1	$=$	5
:---				
2				

Combining linear transformations

2	-1	3		
0	2	1	$=$	5
:---				
2				

Combining linear transformations

2	-1	3		
0	2	1	$=$	5
:---				
2				

Combining linear transformations

2	-1	3		
0	2	1	$=$	5
:---				
2				

Combining linear transformations

2	-1	3		
0	2	1	$=$	5
:---				
2				

Combining linear transformations

2	-1	3		
0	2	1	$=$	5
:---				
2				

Combining linear transformations

© DeepLearning.AI

Combining linear transformations

©) DeepLearning.AI

Combining linear transformations

©) DeepLearning.AI

Combining linear transformations

© DeepLearning.AI

Combining linear transformations

©) DeepLearning.AI

Combining linear transformations

© DeepLearning.AI

Combining linear transformations

© DeepLearning.AI

Combining linear transformations

$$
\begin{array}{|c|c|c|c}
\hline 2 & -1 \\
\hline 0 & 2
\end{array} \cdot \begin{aligned}
& 3 \\
& 1
\end{aligned}+2 \quad=\quad 5
$$

Combining linear transformations

Combining linear transformations

Multiplying matrices

Multiplying matrices

©) DeepLearning.AI

Multiplying matrices

©) DeepLearning.AI

Multiplying matrices

Multiplying matrices

Multiplying matrices

Vectors and Linear Transformations

DeepLearning.AI

The identity matrix

The identity matrix

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

The identity matrix

1	0	0	0	0	a
0	1	0	0	0	b
0	0	1	0	0	c
0	0	0	1	0	d
0	0	0	0	1	e

The identity matrix

1	0	0	0	0	a
0	1	0	0	0	b
0	0	1	0	0	c
0	0	0	1	0	d
0	0	0	0	1	e
	e				

The identity matrix

1	0	0	0	0	a
0	1	0	0	0	b
0	0	1	0	0	c
0	0	0	1	0	d
0	0	0	0	1	e

a
b
c
d
(O) DeepLearning.AI

The identity matrix

©) DeepLearning.AI

The identity matrix

©) DeepLearning.AI

Vectors and Linear Transformations

DeepLearning.AI

Matrix inverse

Matrix inverses

Matrix inverses

Matrix inverses

©) DeepLearning.AI

Matrix inverses

© DeepLearning.AI

Multiplying matrices

Multiplying matrices

a	b
c	d

Multiplying matrices

a	b		3
c	d	1	2

Multiplying matrices

$$
\begin{array}{|l|l|l|l}
\hline \mathrm{a} & \mathrm{~b} \\
\hline \mathrm{c} & \mathrm{~d}
\end{array} \cdot \begin{aligned}
& 3 \\
& 1
\end{aligned} \mathrm{e}=\begin{array}{l|l|}
\hline
\end{array}=\begin{aligned}
& 1 \\
& \hline
\end{aligned}
$$

Multiplying matrices

Multiplying matrices

How to find an inverse?

a	b	3	1	1	0
C	d	1	2	0	1

How to find an inverse?

$$
\begin{aligned}
& \begin{array}{l|l|l}
\mathrm{a} & \mathrm{~b} & 3 \\
& & 1
\end{array}=1 \\
& \begin{array}{l|l|l}
\mathrm{a} & \mathrm{~b} & 1 \\
& 2
\end{array}=0 \\
& \text { c } \quad \mathrm{d} \frac{3}{1}=0 \\
& \text { c|l|l|l} \begin{array}{c}
1 \\
2
\end{array}=1
\end{aligned}
$$

How to find an inverse?

$$
\begin{aligned}
& \begin{array}{l|l}
\mathrm{a} & \mathrm{~b} \\
\hline
\end{array}=1 \quad 3 a+1 b=1 \\
& \begin{array}{l|l}
\text { a } & \text { b } \frac{1}{2}=0 \quad 1 a+2 b=0
\end{array} \\
& \text { c } \mathrm{d} \frac{3}{1}=0 \quad 3 c+1 d=0 \\
& \text { c } \begin{array}{l}
\text { d } \\
2
\end{array}=1 \quad 1 c+2 d=1
\end{aligned}
$$

How to find an inverse?

$$
\begin{aligned}
& \left.\begin{array}{l|l|l|l}
\hline \mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array} \cdot \begin{array}{l}
3 \\
\hline
\end{array} \mathrm{~A} \right\rvert\, \begin{array}{l}
1 \\
\hline
\end{array}=\begin{array}{l}
1 \\
0
\end{array} \\
& \begin{array}{l|l|l|l}
\mathrm{a} & \mathrm{~b} & 3 \\
1 & =1 & 3 a+1 b=1 & a=\frac{2}{5}
\end{array} \\
& \mathrm{a} \text { b } \frac{1}{\mathrm{a}}=0 \quad 1 a+2 b=0 \quad b=-\frac{1}{5} \\
& \text { c } \mathrm{d} \frac{3}{1}=0 \\
& 3 c+1 d=0 \\
& c=-\frac{1}{5} \\
& \text { c|l|l} \frac{1}{2}=1 \\
& 1 c+2 d=1 \\
& d=\frac{3}{5}
\end{aligned}
$$

Quiz

- Find the inverse of the following matrix. If you find that the task is impossible, feel free to click on "I couldn't find it"

5	2
1	2

Solution

- By solving the corresponding system of linear equations, we get the following.

5	2	a	b		1	0
1	2	C	d		0	1

$$
\begin{array}{l|l|l|l|}
\hline 5 & 2 & a \\
c & =1 \\
5 & 2 & b \\
\hline
\end{array}
$$

Solution

- By solving the corresponding system of linear equations, we get the following.

$$
\left.\begin{array}{|l|l|l|l}
\hline 5 & 2 \\
\hline 1 & 2
\end{array} \cdot \begin{array}{l}
a \\
c
\end{array}\right]=\begin{array}{l|l|}
\hline d & 0 \\
\hline & 1 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l|l|l}
5 & 2 & a \\
c
\end{array}=1 \\
& \begin{array}{l|l|l}
5 & 2 & b \\
d
\end{array}=0 \\
& 12 \frac{a}{c}=0 \\
& 12 \frac{b}{d}=1
\end{aligned}
$$

Solution

- By solving the corresponding system of linear equations, we get the following.

$$
\left.\begin{array}{|l|l|l|l}
\hline 5 & 2 \\
\hline 1 & 2
\end{array} \cdot \begin{array}{l}
a \\
c
\end{array}\right]=\begin{array}{l|l|}
\hline d & 0 \\
\hline & 1 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{l|l|l}
5 & 2 & a \\
c
\end{array}=1 \\
& \text { - } 5 \mathrm{a}+2 \mathrm{c}=1 \\
& \begin{array}{l|l|l}
5 & 2 & b \\
d
\end{array}=0 \\
& \text { - } 5 b+2 d=0 \\
& \begin{array}{l|l|l}
\mathrm{a} & \mathrm{a} \\
\mathrm{c}
\end{array}=0 \\
& \text { - } \mathrm{a}+2 \mathrm{c}=0 \\
& 12 \frac{b}{d}=1 \\
& \text { - } b+2 d=1
\end{aligned}
$$

Solution

- By solving the corresponding system of linear equations, we get the following.

5	2			
1	2	\cdot	a	b
:---	:---			
c	d	$=$	1	0
:---	:---			
0	1			

$$
\begin{array}{l|l|l}
\hline 5 & 2 & a \\
\hline & =1 & \bullet 5 a+2 c=1 \\
\hline 5 & 2 & \\
\hline
\end{array}
$$

Solution

- By solving the corresponding system of linear equations, we get the following.

5	2			
1	2	\cdot	a	b
:---	:---			
c	d	$=$	1	0
:---	:---			
0	1			

$$
\begin{aligned}
& \begin{array}{l|l}
5 & 2 \\
c
\end{array}=1 \\
& \text { - } 5 a+2 c=1 \\
& \text { - } a=1 / 4 \\
& \begin{array}{l|l|l}
5 & 2 & \mathrm{~b} \\
d
\end{array}=0 \\
& \text { - } 5 \mathrm{~b}+2 \mathrm{~d}=0 \\
& \text { - } b=-1 / 4 \\
& \begin{array}{l|l|l}
1 & 2 & a \\
c
\end{array}=0 \\
& \text { - } a+2 c=0 \\
& 12 \frac{b}{d}=1 \\
& \text { - } b+2 d=1
\end{aligned}
$$

Solution

- By solving the corresponding system of linear equations, we get the following.

5	2			
1	2	\cdot	a	b
:---	:---			
c	d	$=$	1	0
:---	:---			
0	1			

$$
\left.\begin{array}{l|l|ll}
\hline 5 & 2 & \frac{a}{|c|}=1 & \bullet 5 a+2 c=1
\end{array}\right) \cdot a=1 / 4
$$

Solution

- By solving the corresponding system of linear equations, we get the following.

5	2			
1	2	\cdot	a	b
:---	:---			
c	d	$=$	1	0
:---	:---			
0	1			

Quiz

- Find the inverse of the following matrix. If you find that the task is impossible, feel free to click on "I'm reaching a dead end"

1	1
2	2

Solutions

- The inverse doesn't exist!

We need to solve the following system of linear equations:

1	1	a	b		
2	2	c	d	$=$	1
:---					

$a+c=1$
$2 b+2 d=1$
$2 a+2 c=0$
$b+d=0$
This is clearly a contradiction, since equation 1 says $a+c=1$, and equation 3 says $2 \mathrm{a}+2 \mathrm{c}=0$.

Vectors and Linear Transformations

DeepLearning.AI

Which matrices have an inverse?

Which matrices have inverses?

Which matrices have inverses?

$$
5^{-1}=0.2
$$

Which matrices have inverses?

$$
5^{-1}=0.2 \quad 8^{-1}=0.125
$$

Which matrices have inverses?

$$
5^{-1}=0.2 \quad 8^{-1}=0.125 \quad 0^{-1}=? ? ?
$$

Which matrices have inverses?

\[

\]

Which matrices have inverses?

$$
\begin{aligned}
& 5^{-1}=0.2 \\
& 8^{-1}=0.125 \\
& 0^{-1}=? ? ? \\
& \begin{array}{l|l|l|l|}
\hline 3 & 1 \\
\hline 1 & 2
\end{array}{ }^{-1}=\begin{array}{c|c|}
\hline 0.4 & -0.2 \\
\hline-0.2 & 0.6 \\
\hline
\end{array} \\
& \begin{array}{|l|l}
\hline 5 & 2^{-1} \\
\hline 1 & 2
\end{array}{ }^{-1}=\begin{array}{r|r|}
0.25 & -0.25 \\
\hline-0.125 & 0.625 \\
\hline
\end{array}
\end{aligned}
$$

Which matrices have inverses?

$$
\begin{aligned}
& 5^{-1}=0.2 \\
& 8^{-1}=0.125 \\
& 0^{-1}=? ? ? \\
& \begin{array}{l|l|l|l|}
\hline 3 & 1 \\
\hline 1 & 2
\end{array}{ }^{-1}=\begin{array}{c|c|}
\hline 0.4 & -0.2 \\
\hline-0.2 & 0.6 \\
\hline
\end{array} \\
& \begin{array}{|l|l}
\hline 5 & 2^{-1} \\
\hline 1 & 2
\end{array}{ }^{-1}=\begin{array}{r|r|}
0.25 & -0.25 \\
-0.125 & 0.625 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|}
\hline 1 & 1 \\
\hline 2 & 2
\end{array}=\begin{array}{l}
? \\
\hline
\end{array}
\end{aligned}
$$

Which matrices have inverses?

$$
\begin{aligned}
& 5^{-1}=0.2 \\
& 8^{-1}=0.125 \\
& 0^{-1}=? ? ? \\
& \begin{array}{|l|l|l|l|}
\hline 3 & 1 \\
\hline 1 & 2
\end{array}{ }^{-1}=\begin{array}{c}
0.4 \\
\hline
\end{array} \\
& \begin{array}{|l|l|l|l|}
\hline 5 & 2^{-1} \\
\hline 1 & 2
\end{array}=\begin{array}{c}
0.25 \\
\hline
\end{array} \mathbf{- 0 . 2 5}^{-0.125} 0.625 \\
& \begin{array}{l|l}
1 & 1 \\
2 & 2
\end{array}=\begin{array}{l}
? \\
\hline
\end{array}
\end{aligned}
$$

Non-singular matrix

Which matrices have inverses?

$$
8^{-1}=0.125
$$

$$
0^{-1}=? ? ?
$$

Non-singular matrix

$$
\begin{array}{l|l|l|l|}
\hline 5 & 2^{-1} \\
\hline 1 & 2
\end{array}{ }^{-1}=\begin{gathered}
0.25 \\
-0.25 \\
\hline
\end{gathered}
$$

$$
\begin{array}{l|l}
\hline 1 & 1 \\
\hline 2 & 2
\end{array}=\begin{aligned}
& ? \\
& ?
\end{aligned}
$$

Non-singular matrix

$$
\begin{aligned}
& 5^{-1}=0.2 \\
& \begin{array}{|l|l|l|l|}
\hline 3 & 1^{-1} \\
\hline 1 & 2
\end{array}{ }^{-1} \begin{array}{c}
-0.2 \\
\hline
\end{array}
\end{aligned}
$$

Which matrices have inverses?

$$
\begin{gathered}
5^{-1}=0.2 \\
\begin{array}{l|l|l|l|}
\hline 3 & 1^{-1} \\
\hline 1 & 2
\end{array}{ }^{-1}=\begin{array}{cc}
0.4 & -0.2 \\
\hline-0.2 & 0.6 \\
\hline
\end{array}
\end{gathered}
$$

Non-singular matrix

$$
8^{-1}=0.125
$$

$$
\begin{array}{l|l}
5 & 2^{-1} \\
\hline 1 & 2
\end{array}{ }^{-1}=\begin{array}{lll}
0.25 & -0.25 \\
\hline-0.125 & 0.625 \\
\hline
\end{array}
$$

Non-singular matrix

$$
0^{-1}=? ? ?
$$

Singular matrix

Which matrices have inverses?

$$
\begin{aligned}
& 5^{-1}=0.2 \\
& \begin{array}{|l|l|l|l|}
\hline 3 & 1^{-1} \\
\hline 1 & 2
\end{array}=\begin{array}{c}
0.4 \\
\hline
\end{array} \mathbf{- 0 . 2}^{-0.2} \begin{array}{l}
0.6 \\
\hline
\end{array}
\end{aligned}
$$

Non-singular matrix
Invertible

$$
8^{-1}=0.125
$$

$$
\begin{array}{l|l}
5 & 2^{-1} \\
\hline 1 & 2
\end{array}{ }^{-1}=\begin{array}{lll}
0.25 & -0.25 \\
\hline-0.125 & 0.625 \\
\hline
\end{array}
$$

Non-singular matrix

$$
0^{-1}=? ? ?
$$

Singular matrix

Which matrices have inverses?

$$
5^{-1}=0.2
$$

$$
8^{-1}=0.125
$$

$$
0^{-1}=? ? ?
$$

Non-singular matrix
Invertible

Non-singular matrix
Invertible

Singular matrix

Which matrices have inverses?

$$
5^{-1}=0.2
$$

$$
8^{-1}=0.125
$$

$$
0^{-1}=? ? ?
$$

Non-singular matrix
Invertible

Non-singular matrix
Invertible

Singular matrix
Non-invertible

Which matrices have inverses?

$$
5^{-1}=0.2
$$

$$
8^{-1}=0.125
$$

$$
0^{-1}=? ? ?
$$

3	1^{-1}		
1	2	$=$	0.4
:---:	$\mathbf{- 0 . 2}^{-0.2}$	0.6	
:---			

Non-singular matrix
Invertible

Non-singular matrix
Invertible

Singular matrix
Non-invertible

$$
\text { Det }=5
$$

Which matrices have inverses?

$$
5^{-1}=0.2
$$

$$
8^{-1}=0.125
$$

$$
0^{-1}=? ? ?
$$

3	1^{-1}			
1	2	$=$	0.4	-0.2
:---	:---			
	-0.2			

Non-singular matrix
Invertible

$$
\text { Det }=5
$$

$$
\begin{array}{l|l|l|l|}
\hline 5 & 2 \\
\hline 1 & 2
\end{array}{ }^{-1}=\begin{gathered}
0.25 \\
-0.125 \\
\hline
\end{gathered} 0^{-6.625} \text { }
$$

Non-singular matrix
Invertible

Singular matrix
Non-invertible

$$
\text { Det }=8
$$

Which matrices have inverses?

$$
5^{-1}=0.2
$$

$$
8^{-1}=0.125
$$

$$
0^{-1}=? ? ?
$$

3	1^{-1}		
1	2	$=$	0.4
:---:	$\mathbf{- 0 . 2}^{-0.2}$	0.6	
:---			

Non-singular matrix
Invertible

$$
\text { Det }=5
$$

$$
\begin{array}{l|l|l|l}
\hline 5 & 2
\end{array}{ }^{-1}=\begin{gathered}
0.25 \\
-0.25 \\
\hline 1
\end{gathered} 2^{-0.125} 0.625
$$

Non-singular matrix Invertible

$$
\text { Det }=8
$$

Singular matrix
Non-invertible

$$
\text { Det }=0
$$

Which matrices have inverses?

$$
5^{-1}=0.2
$$

$$
8^{-1}=0.125
$$

$$
0^{-1}=? ? ?
$$

3	1^{-1}				
1	2	$=$		-0.4	-0.2
:---	:---	:---			

Non-singular matrix
Invertible

Non-zero determinants
(9) DeepLearning.AI

Which matrices have inverses?

$$
5^{-1}=0.2
$$

$$
8^{-1}=0.125
$$

$$
0^{-1}=? ? ?
$$

3	1^{-1}				
1	2	$=$		-0.4	-0.2
:---	:---	:---			

Non-singular matrix
Invertible

Vectors and Linear Transformations

DeepLearning.AI

Neural networks and matrices

©) DeepLearning.AI

Quiz: Natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Quiz: Natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Scores:
Lottery: \qquad points

Win: \qquad points

Quiz: Natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Scores:	Examples
Lottery:__ points	Lottery: 3 point
	Win: 2 points
Win: ___ points	"Win, win the lottery!" : 7points

Quiz: Natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Scores:	Examples
Lottery:___ points	Lottery: 3 point
	Win: 2 points
Win:___ points	"Win, win the lottery!" : 7points

Rule:

If the number of points of the sentence is bigger than \qquad , then the email is spam.

Quiz: Natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Scores:
Lottery: \qquad points

Win: \qquad points

Rule:
If the number of points of the sentence is bigger than \qquad _, then the email is spam.

Goal: Find the best points and threshold Lottery: \qquad point Win: \qquad point Threshold: \qquad points

Quiz: Natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Score	$>1.5 ?$
2	Yes
3	Yes
0	No
2	Yes
1	No
1	No
4	Yes
2	Yes
3	Yes

Solution:
Lottery: 1 point Win: 1 point
Threshold: 1.5 points

Graphical natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Graphical natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Graphical natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Graphical natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Graphical natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Graphical natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Graphical natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Graphical natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

		Model
		1
2	1	1

Graphical natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

			Model
2	1	1	$=3$

Graphical natural language processing

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

| | Model | Check: $>\mathbf{1 . 5 ?}$ | |
| :--- | :---: | :---: | :---: | :---: |
| 2 | 1 | 1 | |
| Spam | | | |

Dot product between vectors

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Model 1 1

Dot product between vectors

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

		Model
		1
0	1	1

Dot product between vectors

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

		Model	$=1$	Check: > 1.5?
0	1	1		
	1	1		

[^11]
Dot product between vectors

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

		Model
0	1	1
		$=1$

Check: > 1.5 ?

Not spam

Matrix multiplication

Spam	Lottery	Win	
Yes	1	1	
Yes	2	1	
No	0	0	Model
Yes	0	2	1
No	0	1	1
No	1	0	
Yes	2	2	
Yes	2	0	
Yes	1	2	

©) DeepLearning.AI

Matrix multiplication

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

	Prod
	2
Model	
1	

Matrix multiplication

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

	Prod
	2
Model	
1	3
1	

Check: >1.5?
©) DeepLearning.AI

Matrix multiplication

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

	Prod
	2
Model	
1	3
1	

Check	
	Yes
	Yes
	No
	No
	Yes
	Yes
	Yes

Perceptrons

Spam	Word1	Word2	\ldots	WordN		Prod	Check:	Check
Yes								Yes
Yes					Model			Yes
No								No
Yes								Yes
No					...			No
No								No
Yes								Yes
Yes								Yes
Yes								Yes

©) DeepLearning.AI

Threshold and bias

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Mode 1

1

Threshold and bias

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Check

$1 \cdot$ Win $+1 \cdot$ Lottery $-1.5>0$

Mode
Check: > 1.5 ?

Threshold and bias

Spam	Lottery	Win
Yes	1	1
Yes	2	1
No	0	0
Yes	0	2
No	0	1
No	1	0
Yes	2	2
Yes	2	0
Yes	1	2

Check
$1 \cdot$ Win $+1 \cdot$ Lottery $-1.5>0$
$1 \cdot$ Win $+1 \cdot$ Lottery $-1.5>0$ Bias

Model
Check: > 1.5 ?

Threshold and bias

Spam	Lottery	Win	Bias
Yes	1	1	1
Yes	2	1	1
No	0	0	1
Yes	0	2	1
No	0	1	1
No	1	0	1
Yes	2	2	1
Yes	2	0	1
Yes	1	2	1

Check

$$
\begin{aligned}
& 1 \cdot \text { Win }+1 \cdot \text { Lottery }-1.5>0 \\
& 1 \cdot \text { Win }+1 \cdot \text { Lottery }-1.5>0 \quad \text { Bias }
\end{aligned}
$$

Model
Check: > 1.5?

Threshold and bias

Spam	Lottery	Win	Bias
Yes	1	1	1
Yes	2	1	1
No	0	0	1
Yes	0	2	1
No	0	1	1
No	1	0	1
Yes	2	2	1
Yes	2	0	1
Yes	1	2	1

Check

$$
\begin{aligned}
& 1 \cdot \text { Win }+1 \cdot \text { Lottery }-1.5>0 \\
& 1 \cdot \text { Win }+1 \cdot \text { Lottery }-1.5>0 \quad \text { Bias }
\end{aligned}
$$

Model
Check: > 1.5 ?

Threshold and bias

Spam	Lottery	Win	Bias
Yes	1	1	1
Yes	2	1	1
No	0	0	1
Yes	0	2	1
No	0	1	1
No	1	0	1
Yes	2	2	1
Yes	2	0	1
Yes	1	2	1

Check

$$
\begin{aligned}
& 1 \cdot \text { Win }+1 \cdot \text { Lottery }-1.5>0 \\
& 1 \cdot \text { Win }+1 \cdot \text { Lottery }-1.5>0 \quad \text { Bias }
\end{aligned}
$$

Model
Check: > 0?

The AND operator

AND	x	y
No	0	0
No	1	0
No	0	1
Yes	1	1

The AND operator

AND	x	y
No	0	0
No	1	0
No	0	1
Yes	1	1

Model

1

The AND operator

AND	x	y			Dot prod
No	0	0		Model	
No	1	0		1	0
No	0	1		1	
Yes	1	1			1

The AND operator

The AND operator

AND	x	y		Dot prod	Check: >1.5?	Check
No	0	0	Model	0		No
No	1	0	1	1	$\stackrel{\rightharpoonup}{2}$	No
No	0	1	1	1		No
Yes	1	1		2		Yes

The AND operator

AND	x	y
No	0	0
No	1	0
No	0	1
Yes	1	1

The AND operator

AND	x	y
No	0	0
No	1	0
No	0	1
Yes	1	1

The perceptron

(O) DeepLearning.AI

The perceptron

©) DeepLearning.AI

(O) DeepLearning.AI

Vectors and Linear Transformations

DeepLearning.AI

Conclusion

[^0]: (O) DeepLearning.AI

[^1]: (O) DeepLearning.AI

[^2]: (O) DeepLearning.AI

[^3]: (O) DeepLearning.AI

[^4]: (O) DeepLearning.AI

[^5]: (O) DeepLearning.AI

[^6]: (O) DeepLearning.AI

[^7]: (O) DeepLearning.AI

[^8]: ©) DeepLearning.AI

[^9]: ©) DeepLearning.AI

[^10]: ©) DeepLearning.AI

[^11]: ©) DeepLearning.AI

